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1. Introduction

I In networked and embedded systems, the
computation resources available for calculating the
control input may be time-varying.

I Therefore, the implicit assumption often made
about the processor always being able to execute
the desired control algorithm may break down.

I We study control in the presence of random
availability of processing power.

I We present an anytime algorithm, which provides
a more refined control input as more processing
resources become available.

I The basic idea is to utilize the extra processing
time to refine the control input to decrease the
Lyapunov function as compared to the value at as
many time steps in the past as possible.

I Thus, the effect of not being able to compute an
input at a previous time step can be mitigated.

I We analyse stochastic stability of the closed loop
system and indicate through numerical simulations
that the performance gains provided by the
proposed algorithm can be significant.

2. System Setup

Plant Model
I We consider a nonlinear plant model with state

xk ∈ Rn and input uk ∈ Rp:
xk+1 = f (xk , uk), f (0, 0) = 0.

I There exists a stabilising state-feedback control
policy κ with Lyapunov function V (x) ≥ |x |, which
gives

V (xk+1) < εV (xk), for some ε ∈ (0, 1),

when
xk+1 = f (xk , κ(xk)).

I With zero input, we have
V (f (x , 0)) ≤ αV (x), ∀x ∈ Rn, (1)

for some α > 0.
I We suppose that the initial state x0 is such that

V (x0) <∞.

Random Processor Time Availability
I The amount of processor time available for control,

say τk , is time-varying and random.
I To encompass situations where the controller task

can be preempted by other computational tasks,
we will assume that the controller

1. does not know the distribution of {τk},
2. has no advance knowledge of the value of τk .

3. Baseline Algorithm

I We denote the probability that the controller is
unable to calculate any control input via p0.

I When using the baseline algorithm, we have:

uk =

{
κ(xk) with probability 1− p0,
0 with probability p0.

I The resulting system is akin to a networked control
system with random packet loss.

Stability via the Baseline Algorithm
Consider the baseline algorithm and α as in (1).
We then have that, if

α p0 < 1− ε (1− p0),

then: ∞∑
k=0

E
{
|xk |

∣∣ x0
}

<∞.

4. Anytime Control Algorithm

Basic Idea
I The control input uk aims at decreasing V (xk+1).
I At some instances, the execution time may be

insufficient giving uk = 0 and V (xk+1) > V (xk).
I The algorithm aims at countering the effect of such

increases whenever possible.

Algorithm Description
At every time k and given xk :
Step 1. Set Nk = 0 and uk = 0.
Step 2. Calculate uk such that

V
(
f (xk , uk)

)
< εV (xk+1−Nk).

Step 3. Set
Nk ← Nk + 1

and go to Step 2.

Remarks
I Whenever the algorithm is interrupted, the current

value uk is used as the control input.
I The algorithm is anytime in the sense that a value

for uk is available at any time. As more execution
time becomes available, the quality of uk is refined.

I The algorithm does not require knowledge of the
distribution of the processor time availability.

I The algorithm seeks to calculate a control input
which reduces the Lyapunov function over several
past time steps. This requires the existence of a
common control Lyapunov function going back Nk
time steps. This requirement may impose an upper
bound on the possible values of Nk .

5. Stability via the Anytime Algorithm

We denote the time instants where Nk ≥ 1 by
{ki} ⊆ {0, 1, 2, . . . }, ki+1 > ki

and assume that k0 = 0.

Assumptions
A1. The process {Nk} is independent and
identically distributed with:

Prob
{

Nk = η
}

= pη, η ∈ {0, 1, 2, . . . }. (2)
A2. The bound α in (1) satisfies

α < 1/p0.

Lemma (Conditional Expectation of V (xk1+1)):
Consider the anytime algorithm and suppose that
Assumptions A1 and A2 are satisfied.
We then have:

E
{

V (xk1+1)
∣∣ x(k1)

}
= ΩV (x1),

where

Ω , ε (1− p0)

(
1 +

α

1− p0α

∞∑
η=1

pηp
η−1
0

)
≥ 0.

Proof (Main Points):
1. The variable k1 satisfies Prob

{
k1 = `

}
= (1− p0)p`

0.
2. Use conditioning upon k1 and Nk .

Theorem (Stochastic Stability):
Consider the anytime algorithm. Suppose that
Assumptions A1 and A2 are satisfied, and that
Ω < 1. Then

∞∑
k=0

E
{
|xk |

∣∣ x0
}

<∞

Proof (Main Points):
1. V (kki+1) is a stochastic Lyapunov function for {xki}.
2. We have E

{
|xki+1|

∣∣ x0
}
≤ E

{
V (xki+1)

∣∣ x0
}
≤ ΩiV (x0).

3. For the intermediate instants, E{|xk |} can be
bounded by conditioning upon ∆i , ki+1 − ki.

6. Numerical Examples

I We assume that the processor time available for
control calculations is uniformly distributed in the
interval [0, 1]

I To evaluate performance, we consider

E


99∑

k=0

10x2
k + u2

k


by carrying out 500 Monte-Carlo simulations.

Nonlinear System
We first consider the following process:

xk+1 = xk + 0.2(x3
k + uk),

with associated control law and Lyapunov function
κ(x) = −x3 − x , V (xk) = |xk |.

The figure indicates that the proposed algorithm
may gives significant performance gains.

Linear System
We next consider the linear process

xk+1 = αxk + uk

and assume that the time to calculate one control
input (i.e., of carrying out Step 2) is equal to 0.2.

As the plant becomes more unstable, the
proposed algorithm gives better performance
compared to the baseline algorithm.

7. Conclusions

I We proposed an anytime control algorithm for
situations where process resources are random.

I Stability of the resulting closed loop system can be
analysed using stochastic Lyapunov functions.

I Simple numerical examples illustrated the
performance gain with the proposed algorithm.

I This is but a first step towards a more complete
theory of anytime control algorithms.

I In particular, further work may include:
I considering the effect of model imperfections,
I carrying out a joint design of the anytime
algorithm and a processor-scheduler.
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