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Contribution
We introduce a stochastic model predictive
control (SMPC) approach for networked con-
trol systems (NCSs) that are subject to time-
varying sampling intervals and time-varying
transmission delays. Assuming that the con-
trolled plant can be modeled as a linear system,
we present a SMPC formulation based on sce-
nario enumeration that optimizes a stochastic
performance index and provides closed-loop
stability in the mean-square sense.

NCS Model

The considered NCS model includes:

◦ A continuous-time linear plant of the form

ẋ(t) = Ax(t) +Bu(t) (1)

◦ Time-varying sampling intervals hk
◦ Time-varying delays τk

The uncertain parameters (hk, τk) are assumed
bounded, with τk ≤ hk, and described by an
arbitrary continuous probability distribution.
By discretizing the plant (1) at the sampling
times sk and using ξk = [xTk uTk−1]T , the NCS
is formulated as

ξk+1 = Ãhk,τkξk + B̃hk,τkuk (2)

Overapproximation of NCS
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◦ Following the approach of [1], the uncertain
parameters set is partitioned in a number of
regions, and for every region a local overap-
proximation of dynamics (2) is computed.

◦ The problem of finding a function V (ξk) =
ξTk Pξk which grants mean-square stability
can now be recast as

E[V (ξk+1)] ≤
S∑

m=1

pm max
(hk,τk)∈Sm

ξTk C
T
hk,τk

PChk,τkξk

◦ This can be converted into LMI conditions.

Stochastic MPC design
The SMPC policy is derived from the one pre-
sented in [2], and relies on the following steps:

◦ First, a new partition φ1, φ2, . . . , φs of the pa-
rameters space is defined, and a realization
probability is associated to every region.

◦ The prediction model for the MPC controller
is given by the collection of the averaged dy-
namics of the NCS (2) in every region φi, i.e.,

ξk+1 =


Ā1ξk + B̄1uk if (hk, τk) ∈ φ1,
Ā2ξk + B̄2uk if (hk, τk) ∈ φ2,

...
...

Āsξk + B̄suk if (hk, τk) ∈ φs,

Ān =

∫∫
φn

Ãh,τp(h, τ)dhdτ, B̄n =

∫∫
φn

B̃h,τp(h, τ)dhdτ.

This allows a decoupling between stability
requirements and performance optimization.

◦ Then, an optimization tree based on the pre-
diction model is designed, following a maxi-
mum likelihood policy. Every node is identi-
fied by a predicted state and input. This leads
to a multiple-horizon control problem.

◦ Offline, a Lyapunov function which provides
mean-square stability is obtained by exploit-
ing the NCS overapproximation and impos-
ing a state-feedback structure on the input.

◦ Online, a quadratically constrained quadratic
problem (QCQP) based on the precomputed
optimization tree is solved. The objective
function is an approximation of the closed-
loop expected trajectory. The problem in-
corporates quadratic constraints to enforce
mean-square stability.

Illustrative example
The SMPC scheme was tested on an open-loop
unstable plant, modeled as (1) with A = [ 1 15

−15 1 ]
and B = [ 0.20.8 ]. The sampling intervals hk are
taken constant and equal to hnom = 0.1, while the
PDF modeling the realizations of the delay τk is
given by a truncated normal distribution.

We construct S = 4 line segments to partition the
set of possible values of τk. This allows us to ob-
tain a (mean-square) stabilizing controller of the
form uk = Kξk. With the aim of improving per-
formances, we perform a finer partition for pre-
diction purposes, using s = 8 line segments.

We run 100 simulations comparing the SMPC
with a robust state-feedback controller (RSF),
that provides robust convergence to the origin.

Controller µ(Ji) σ(Ji) avg. time
RSF 884.34 382.19 –
SMPC 678.01 134.74 29 ms
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Approximation for stability conditions
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