A Model Predictive Control Approach for

Stochastic Networked Control Systems
D. Bernardini', M.C.F. Donkers?, A.

1

2

3

Bemporad?, W.P.M.H. Heemels?

Department of Information Engineering, University of Siena, ltaly
Department of Mechanical Engineering, Eindhoven University of Technology, the Netherlands
Department of Mechanical Engineering, University of Trento, Italy

Contribution Stochastic MPC design

We introduce a stochastic model predictive
control (SMPC) approach for networked con-
trol systems (NCSs) that are subject to time-
varying sampling intervals and time-varying
transmission delays. Assuming that the con-
trolled plant can be modeled as a linear system,
we present a SMPC formulation based on sce-
nario enumeration that optimizes a stochastic
performance index and provides closed-loop
stability in the mean-square sense.
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The considered NCS model includes:

o A continuous-time linear plant of the form
t(t) = Ax(t) + Bu(t) (1)

o Time-varying sampling intervals /

o Time-varying delays 7

The uncertain parameters (hg, 7 ) are assumed

bounded, with 7, < hg, and described by an

arbitrary continuous probability distribution.
By discretizing the plant (1) at the sampling

times s and using &, = [z ui_,]*, the NCS
is formulated as
Eht1 = Ahkﬂ'kgk T Bhkﬂ'kuk (2)

Overapproximation of NCS

Discrete approximation of continuous PDFs
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o Following the approach of [1], the uncertain
parameters set is partitioned in a number of
regions, and for every region a local overap-
proximation of dynamics (2) is computed.

o The problem of finding a function V' (§) =
&l P&, which grants mean-square stability
can now be recast as

L[V (Ert1)] <

S
pm (hkrf_l:;’}és k Chk,’Tk PChkﬂ_k fk
m:1 9 ™m

o This can be converted into LMI conditions.
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p(h,t)=0 -~

Pr ((h,7) € Si) =
7 i i // p(h, T)dhdT
// Sm

Transmission interval hx

Transmission delay T
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The SMPC policy is derived from the one pre-
sented in [2], and relies on the following steps:

o First, a new partition ¢, ¢o, ..., ¢s of the pa-
rameters space is defined, and a realization
probability is associated to every region.

o The prediction model for the MPC controller
is given by the collection of the averaged dy-
namics of the NCS (2) in every region ¢;, i.e.,

A1k + Brug  if (hi, k) € ¢1,
As&y + Bouy,  if (hg, Ti) € @2,
Sht1 = : : °

Asfk + Bsuk if (hk7 Tk:) S ¢57

A, = / / Ap p(h, T)dhdT, By, = / By, +p(h, T)dhdr.
n b

This allows a decoupling between stability
requirements and performance optimization.

o Then, an optimization tree based on the pre-
diction model is designed, following a maxi-
mum likelihood policy. Every node is identi-

fied by a predicted state and input. This leads

to a multiple-horizon control problem.

Offline, a Lyapunov function which provides
mean-square stability is obtained by exploit-
ing the NCS overapproximation and impos-
ing a state-teedback structure on the input.

Online, a quadratically constrained quadratic
problem (QCQP) based on the precomputed
optimization tree is solved. The objective
function is an approximation of the closed-
loop expected trajectory. The problem in-
corporates quadratic constraints to enforce
mean-square stability.

lllustrative example

The SMPC scheme was tested on an open-loop We construct S = 4 line segments to partition the

1 15]

unstable plant, modeled as (1) with A = | 35 °| set

of possible values of 7. This allows us to ob-

and B = [§:4]. The sampling intervals hj are tain a (mean-square) stabilizing controller of the
taken constant and equal to hpom = 0.1, while the form u; = K¢&,. With the aim of improving per-
PDF modeling the realizations of the delay 7, is formances, we perform a finer partition for pre-
given by a truncated normal distribution. diction purposes, using s = 8 line segments.

We run 100 simulations comparing the SMPC

Controller | u(J;) | o(J;) | avg. time

with a robust state-feedback controller (RSF),

that provides robust convergence to the origin.
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