A Model Predictive Control Approach for Stochastic Networked Control Systems

D. Bernardini¹, M.C.F. Donkers², A. Bemporad³, W.P.M.H. Heemels²

- ¹ Department of Information Engineering, University of Siena, Italy
- ² Department of Mechanical Engineering, Eindhoven University of Technology, the Netherlands
- ³ Department of Mechanical Engineering, University of Trento, Italy

Contribution

We introduce a **stochastic model predictive control (SMPC)** approach for networked control systems (NCSs) that are subject to timevarying sampling intervals and time-varying transmission delays. Assuming that the controlled plant can be modeled as a linear system, we present a SMPC formulation based on scenario enumeration that optimizes a stochastic performance index and provides closed-loop stability in the mean square sense

Stochastic MPC design

- The SMPC policy is derived from the one presented in [2], and relies on the following steps:
- First, a new **partition** $\phi_1, \phi_2, \dots, \phi_s$ of the parameters space is defined, and a realization probability is associated to every region.
- The **prediction model** for the MPC controller is given by the collection of the averaged dynamics of the NCS (2) in every region ϕ_i , i.e.,

stability in the mean-square sense.

The considered NCS model includes:

- A continuous-time linear **plant** of the form $\dot{x}(t) = Ax(t) + Bu(t)$ (1)
- Time-varying sampling intervals h_k
- Time-varying **delays** τ_k

The uncertain parameters (h_k, τ_k) are assumed bounded, with $\tau_k \leq h_k$, and described by an arbitrary **continuous probability distribution**. $\xi_{k+1} = \begin{cases} \bar{A}_1 \xi_k + \bar{B}_1 u_k & \text{if } (h_k, \tau_k) \in \phi_1, \\ \bar{A}_2 \xi_k + \bar{B}_2 u_k & \text{if } (h_k, \tau_k) \in \phi_2, \\ \vdots & \vdots \\ \bar{A}_s \xi_k + \bar{B}_s u_k & \text{if } (h_k, \tau_k) \in \phi_s, \end{cases}$ $\bar{A}_n = \iint_{\phi_n} \tilde{A}_{h,\tau} p(h,\tau) dh d\tau, \ \bar{B}_n = \iint_{\phi_n} \tilde{B}_{h,\tau} p(h,\tau) dh d\tau.$

This allows a **decoupling** between stability requirements and performance optimization.

• Then, an **optimization tree** based on the prediction model is designed, following a maximum likelihood policy. Every node is identified by a predicted state and input. This leads to a **multiple-horizon** control problem.

 Offline, a Lyapunov function which provides mean-square stability is obtained by exploiting the NCS overapproximation and imposing a state-feedback structure on the input.

Online, a quadratically constrained quadratic problem (QCQP) based on the precomputed optimization tree is solved. The objective function is an approximation of the **closedloop expected trajectory**. The problem incorporates quadratic constraints to enforce **mean-square stability**.

Illustrative example

The SMPC scheme was tested on an open-loop unstable plant, modeled as (1) with $A = \begin{bmatrix} 1 & 15 \\ -15 & 1 \end{bmatrix}$ We construct S = 4 line segments to partition the set of possible values of τ_k . This allows us to obtain a (mean-square) stabilizing controller of the taken constant and equal to $h_{\text{nom}} = 0.1$, while the PDF modeling the realizations of the delay τ_k is

By discretizing the plant (1) at the sampling times s_k and using $\xi_k = [x_k^T \ u_{k-1}^T]^T$, the NCS is formulated as

$$\xi_{k+1} = \tilde{A}_{h_k,\tau_k} \xi_k + \tilde{B}_{h_k,\tau_k} u_k$$

(2)

Overapproximation of NCS

- Following the approach of [1], the uncertain parameters set is **partitioned** in a number of regions, and for every region a local **overapproximation** of dynamics (2) is computed.
- The problem of finding a function $V(\xi_k) = c^T D c$ which grants mean equate stability

given by a truncated normal distribution. diction purposes, using s = 8 line segments.

We run 100 simulations comparing the SMPC with a **robust state-feedback** controller (RSF), that provides robust convergence to the origin.

Controller	$\mu(J_i)$	$\sigma(J_i)$	avg. time
RSF	884.34	382.19	
SMPC	678.01	134.74	29 ms

 $\xi_k^T P \xi_k$ which grants mean-square stability can now be recast as

 $\mathbb{E}[V(\xi_{k+1})] \le$ $\sum_{m=1} p_m \max_{(h_k,\tau_k)\in\mathcal{S}_m} \xi_k^T C_{h_k,\tau_k}^T P C_{h_k,\tau_k} \xi_k$

• This can be converted into **LMI conditions**.

Funding

This work was partially supported in part by the European Commission under project "WIDE - Decentralized and Wireless Control of Large-Scale Systems", contract number FP7-IST-224168.

References

[1] M.C.F. Donkers, W.P.M.H. Heemels, D. Bernardini, A. Bemporad, V. Shneer. Stability analysis of stochastic networked control systems, In *Proc. American Control Conference*, Baltimore, MD, 2010, pp. 3684–3689.

[2] D. Bernardini, A. Bemporad Scenario-based model predictive control of stochastic constrained linear systems In *Proc.* 48th IEEE Conf. on Decision and Control, Shanghai, China, 2009, pp. 6333–6338.