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Motivation

Change detection is one of typical tasks of sensor networks; possibility to test the
decision variables at any node in the network and in real time is often desirable.

* In the classical multi-sensor detection schemes the local sensors send all their data to
other sensors, and ultimately to a fusion center - the decision variables are tested only at
predefined fusion nodes.

* Most of the recent attempts to apply consensus techniques to the distributed detection
problem assume that the dynamic agreement process starts after all data have been
collected - inapplicable to real time change detection problems.

Contribution

A novel algorithm is proposed for distributed change detection while monitoring the
environment through a wireless sensor network.

* All the nodes in the network generate local decision variables by recursive schemes
belonging to the geometric moving average control charts, applicable in real time.

* A dynamic consensus scheme with preselected asymmetric communication gains is
applied; an algorithm which asymptotically provides nearly equal behavior of all the
nodes is obtained (i.e., any node can be selected for testing the decision variable w.r.t.
a pre-specified threshold).

Algorithm

* Network with n nodes, each node collects measurements and generates at each
discrete time instant t a scalar quantity x, (¢), directly or as a result of local signal
processing; {x;(#)} are considered as mutually independent stationary random
sequences with means m, and covariances 7, (7).

* Global decision function for the whole network
s(t+D)=as (z‘)+(1 a)Za) (t+1), 5.(00=0, O<a <],

where @, = k0o are the components of the vector @' = k0" X7 (k= Q. w)™)

*The basic assumption: nodes in the network are connected in such a way that the n X n
matrix C represents the weighted adjacency matrix for the underlying graph representing
the network, and that C is row stochastic.

» The proposed algorithm generates the vector decision function s(f) =[s,(¢)---s, ()]’
where x(7) =[x, (¢)---x, (1)]"

of the network:
s+)=aCs(®)+(1—-a)Cx(t+1), s(0)=0,

» Consensus matrix C performs for each node "convexification" of the neighboring states
and enforces in such a way consensus between the nodes.

Convergence analysis

« Assumptions:

A1) C has the eigenvalue 1 with multiplicity 1;

—> C' converges to a nonnegative row stochastic matrix with equal rows;

A2) lim, C' = =10’ ;

— C can be constructed by solving the linear equation @ "C =" under the
constraints that some of the elements of C are equal to zero and that it is row stochastic.

+ Error is defined as e(1) = s(t) 15, (1) = (I - 10" )s() = (1 - a)Zor CH%(t—1i),
where C = C — 1" x(t)=( - 1o )x(1).

- 5(7) as the estimator of § .(?) is, in general, biased; m, = E{e(t)} = O only when
m,=m,, I,j= l,...,m: the bias is smaller when ¢ is closerto 1 (E{e(?)} ~ (1—)).

* The focus of the analysis is pIaced on the mean square error matnx
defined as Q(¢) = E{e(t)e(l‘) f—m, (H)m, ) =(1-a)’ CD(t) R(t)CD(t) where

O(t)=[a"'C'ia*C i a"CY’ . R(t)=R(t)—mymy, R({)=E{XHX®'},
X)) =[x(1)" - x())' 1", my = E{X(t)}; further, R(t)=[R,], where
R, = diag{ri (i— j)..oor, (i = )}
Theorem 1.
Let assumptions A1) and A2) hold, together with A3) max Z |r(z')|<K <00,
Th
" max,, 0,0 = 0((1-a)").
Proof:

. The n- dlmenS|onaI quadratlc form y' O()y=(1-a)’y ®©@)" R(r)CI)(t)y is anaIyzed.

. The expression y' @(¢)" ®(¢)y is in the form of a sum of terms containing yTC Ci Vi

- From assumptions A1) and A2) = C has the same eigenvalues as C, except for the
eigenvalue 1 which is replaced by ( O — modules of all of its eigenvalues are | Iess than 1;

. The recursion P(t+1)=CP()C", P(0)=1is considered ( (P(t)=C'C’ )

. The column vectors of P(?) are concatenated to obtain an 7 *vector vec{P(?)}

= vec{P(t+1)} = (C X C)veci{P(r+1)} (”"®” denotes the Kronecker’s product);

-FromA1)and A2) = | A(CXC)| =4, <] (eigenvalues of C ® C take values
from the cross products of the eigenvalues of C) — HP(t)H < k /lt

= y'C'C" y <k, 2,y and y" @) ROD()y <[y kKZ a' Ay <K, <o

e. denotes the n-vector of zeros with only i-th entry equal to one)
furthermore, | O, (¥) |< max; O, (¢) . Q.E.D.

- By choosing y =e¢; (e,
= 0,(<K,(1-a)*
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Distributed detection based on time averaging

* The recursive algorithms with constant coefficient & are essentially tracking
algorithms with exponential forgetting, able to cope with change detection phenomena.
* In the case when « is a function of time tending to 1 when t tends to infinity, the
algorithms are not directly suitable for change detection purposes.
Theorem 2. Let & bereplaced by a(t+1)=1—y(t+1), and let the assumptions A1),
A2) and A3) be satisfied, together with:
A4) y(?)is a non-increasing sequence satisfying

7(t)>0 lim,_,,y(6)=0, > y(t)=co.

" o) = o)
Theorem 3. Under the assumptions of Theorem 2 and with 7(¢) = — we have
|00 = o(z™) ’

while var{s_(?)} =

o).

Simulation results

* Network with n = 10 nodes is considered, where the means are randomly taken from
the interval [0, 1], and variances randomly taken from the interval [0.5, 1.5] (means are
zero in the case of no change). The moment of change is chosen to be t= 200
« Communication gains are obtained by solving the linear equation @ "C=0"

(04500 0 0 01291 0 0  0.314 01683 0  0.1212]

0 02761 02930 0 0 0 0.0942 02955 0  0.0411

0 02770 02944 0 0 0 0.0909 02997 0  0.0380

*e.g 0.0176 0 0 01352 0 01609 0 02664 03233 0.0966
. 0o IR 0 0 0 02226 02569 0 0 05205 0
’ 3 6’1 -2 0 0 0  0.1003 0.1076 0.1247 0.1129 02396 03149 0

=1 0.0109 02191 02265 0 0  0.1213 0.1195 02287 0  0.0741

, l. s |0.0013 02396 02570 0.0572 0  0.0869 0.0651 02689 0  0.0240
(lm,_, C" =1w") 0 0 0  0.0903 0.1080 0.1371 0 0  0.6646 0

00253 0.1942 0.1976 0.1341 0 0  0.1427 02000 0  0.1062 |

* The proposed algorithm effectively achieves very similar behavior of all of the nodes,
with local decision functions getting closer to the global decision function as o — 1.
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Decision functions — mean +/- one standard deviation: for
one node (solid lines) and global (dashed lines)

Detection statistics
Detection statistics

Decision functions — one realization: for one node (blue)
and global (red)

eThe values of | E{e(t)}| and E{e(t)e(r)"}, are estimated for different values of «
for t = 1000 using 1000 Monte Carlo runs.
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e The distribution of the alarm times at which a detection occurs is estimated for different
values of & (the moment of change is t = 500, the threshold is 1, =0.5k0""27'9").

e In the time averaging case the estimates of E{e(t)e(l) } . are calculated using 1000
Monte Carlo runs.
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The distribution of the alarm times for different values of ¢ :
for one node (left) and global (right).

Estimated error variances as functions of time

FURTHER WORK: Generalization of the presented results to the case of stochastic time
varying consensus matrices and application of the same methodology to the recursive
Generalized Likelihood Ratio (GLR) algorithm.



