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Motivation

Change detection is one of typical tasks of sensor networks; possibility to test the 
decision variables at any node in the network and in real time is often desirable.
• In the classical multi-sensor detection schemes the local sensors send all their data to 
other sensors, and ultimately to a fusion center - the decision variables are tested only at 
predefined fusion nodes. 
• Most of the recent  attempts to apply consensus techniques to the distributed detection 
problem assume that the dynamic agreement process starts after all data have been 
collected - inapplicable to real time change detection problems.

Contribution

A novel algorithm is proposed for distributed change detection while monitoring the 
environment through a wireless sensor network. 
• All the nodes in the network generate local decision variables by recursive schemes 
belonging to the geometric moving average control charts, applicable in real time.
• A dynamic consensus scheme with preselected asymmetric communication gains is 
applied; an algorithm which asymptotically provides nearly equal behavior of all the 
nodes is obtained (i.e., any node can be selected for testing the decision variable w.r.t. 
a pre-specified threshold).

Algorithm

• Network with n nodes, each node collects measurements and generates at each 
discrete time instant t a scalar quantity , directly or as a result of local signal 
processing;          are considered as mutually independent stationary random 
sequences with means      and covariances        .

• Global decision function for the whole network

where                        are the components of the vector (                      ).

•The basic assumption: nodes in the network are connected in such a way that the 
matrix C represents the weighted adjacency matrix for the underlying graph representing 
the network, and that C is row stochastic.
• The proposed algorithm generates the vector decision function 
of the network: 

where                                       .
• Consensus matrix C performs for each node "convexification" of the neighboring states 
and enforces in such a way consensus between the nodes. 
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Distributed detection based on time averaging

• The recursive algorithms with constant coefficient are essentially tracking  
algorithms with exponential forgetting, able to cope with change detection phenomena.
• In the case when is a function of time tending to 1 when t tends to infinity, the 
algorithms are not directly suitable for change detection purposes.
Theorem 2. Let      be replaced by , and let the assumptions A1), 
A2) and A3) be satisfied, together with:
A4)         is a non-increasing sequence satisfying 

.
Then,

.
Theorem 3. Under the assumptions of Theorem 2 and with     we have

while                                    .
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Simulation results

• Network with n = 10 nodes is considered, where the means are randomly taken from 
the interval [0, 1], and variances randomly taken from the interval [0.5, 1.5] (means are 
zero in the case of no change). The moment of change is chosen to be t = 200.
• Communication gains are obtained by solving the linear equation . 

• e.g.

(                               )

• The proposed algorithm effectively achieves very similar behavior of all of the nodes, 
with local decision functions getting closer to the global  decision function as             .

The values of                   and                            are estimated for different values of      
for t = 1000 using 1000 Monte Carlo runs.

The distribution of the alarm times at which a detection occurs is estimated for different 
values of      (the moment of change is t = 500, the threshold is                        ). 

In the time averaging case the estimates of                    are calculated using 1000 
Monte Carlo runs.
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1062.002000.01427.0001341.01976.01942.00253.0
06646.0001371.01080.00903.0000
0240.002689.00651.00869.000572.02570.02396.00013.0
0741.002287.01195.01213.0002265.02191.00109.0
03149.02396.01129.01247.01076.01003.0000
05205.0002569.02226.00000
0966.03233.02664.001609.001352.0000176.0
0380.002997.00909.00002944.02770.00
0411.002955.00942.00002930.02761.00
1212.001683.01314.0001291.0004500.0
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Decision functions – one realization: for one node (blue) 
and global (red)

Decision functions – mean +/- one standard deviation: for 
one node (solid lines) and global (dashed lines)
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The distribution of the alarm times for different values of    :
for one node (left) and global (right).

Estimated error variances as functions of time

FURTHER WORK: Generalization of the presented results to the case of stochastic time 
varying consensus matrices and  application of the same methodology to the recursive 
Generalized Likelihood Ratio (GLR) algorithm.

Convergence analysis

• Assumptions:
A1) C has the eigenvalue 1 with multiplicity 1;

Ci converges to a nonnegative row stochastic matrix with equal rows;
A2)                               ;

C can be constructed by solving the linear equation              under the 
constraints that some of the elements of C are equal to zero and that it is row stochastic. 

• Error is defined as ,
where .
• as the estimator of          is, in general, biased;   only when

; the bias is smaller when is closer to 1 (                             ).

• The focus of the analysis is placed on the mean-square error matrix, 
defined as                                                      , where

further,                      , where
.

Theorem 1. 
Let assumptions A1) and A2) hold, together with A3)             .
Then,

.
Proof: 
• The n-dimensional quadratic form is analyzed.
• The expression is in the form of a sum of terms containing          ;
• From assumptions A1) and A2)            has the same eigenvalues as C, except for the 
eigenvalue 1 which is replaced by 0       modules of all of its eigenvalues are less than 1;
• The recursion is considered (            );
• The column vectors of          are concatenated to obtain an   -vector

(’’ ’’ denotes the Kronecker’s product);
• From A1) and A2) (eigenvalues of             take values 
from the cross products of the eigenvalues of      )

and
• By choosing              (     denotes the n-vector of zeros with only i-th entry equal to one)

;  furthermore, . Q.E.D.
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