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Suboptimal approaches

Main Insights
• Initial problem numerically infeasible
• Within subclass WS and DE: Opti-

mal strategy computable
• DE: Comp. complexity increases ex-

ponentially with round-trip time

∆RRT = T1 + T2

• WS: Scale-free complexity w.r.t.∆RRT

• WS and DE: Technological realiza-
tion as extension of TCP

• Further analysis: Network stability

Dropout Estimation (DE)

Restriction: Assume certainty equiva-
lence controller given by (1).

Problem reduction:
Based on [Matei et al. 2008] the argu-
ments of the optimal event-trigger re-
duce to

(i) finite history of state and events

Xk
k−max(T1,T2)

, δk−1
k−max(T1+T2)

(ii) last known estimate E[xk−T2
|IC

k−T2
]

Waiting Strategy (WS)

Restriction: Allow only 1 unacknow-
ledged packet (congestion window= 1).

Define additional discrete state to flag
an unacknowledged packet

sk+1 =







T1+T2−1 δk=1 ∧ sk=0
sk−1 δk=0 ∧ sk>0
0 δk=0 ∧ sk=0

Optimal solution:

uk = γ∗
k(I

C
k ) = −Lk E[xk|I

C
k ] (1)

Gain Lk is related to LQ regulation.

min
f

E
[N−1∑

k=0

eTk Γkek + λδk

]

, (2)

ek+1 =
(
1− 1{sk=0}qkδk

)
Aek + wk

Estimation error ek = xk − E[xk|IC
k ] is

sufficient statistic for event-trigger f.

Key: Dividing initial problem into tract-
able subproblems.

Restriction: Assume certainty equiv-
alence controller given by (1).

Restriction: Allow only 1 unacknow-
ledged packet (congestion window=1).

Numerical validation
Scenario: A = B = 1, x0, wk ∼ N (0, 1)
T1 = 1, Q = QN = 1, R = 10, N = 100.
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communication penalty λ

co
st
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E

Observation: DE outperforms WS for low λ.

dropout prob-
ability β = 0.5

dropout prob-
ability β = 0.25

no packet
dropout

System Model

ProcessController

bidirectional
communication channel

qk−(T1+T2)

Event
trigger

yk xkuk

qk =

{

1 success

0 dropout

T1

T2

δk

• Stochastic discrete-time process:
xk+1 = Axk +Buk + wk

yk+T1
=

{
xk, δk = 1 ∧ qk = 1
∅, otherwise

• Time-invariant controller

uk = γk(IC
k )

• Event-trigger

δk = fk(IE
k ) =

{
1 send xk

0 idle

• IC
k and IE

k observation history

Objective

Design f , γ minimizing J(f, γ) = E
[

xT
NQNxN+

∑N−1
k=0 xT

kQxk+u
T
kRuk +

comm.
penalty
︷︸︸︷

λδk

]

Motivation
Networked control systems pose the need
for a conjoint consideration of

• Control performance
• Constrained communication
• Packet loss and time-delay
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