

Distributed collision avoidance for interacting vehicles: a command governor approach

Abstract

This paper deals with a distributed coordination problem including collision avoidance. The problem is solved by using a Command Governor strategy based on mixed integer optimization. First, we present an algorithm to find an appropriate command in the centralized case, then a distributed sequential procedure is described. Simulations are reported for comparisons.

1. Problem Formulation

SYSTEM DESCRIPTION:

Consider a set of *N* decoupled sytems $A = \{1, ..., N\}$ where i-th system is described by the following equations:

 $\mathbf{x}_i(t+1) = \Phi_{ii} \mathbf{x}_i(t) + G_i g_i(t)$

3. Distributed CG for collision avoidance

Let the communication graph be an Hamiltonian graph and the cycle $H = \{1, 2, ..., N\}$ an Hamiltonian cycle.

The idea behind the S-CG is **to allow only one agent per time** to manipulate its local command signal. After each decision, the agent in charge transmits its local command and state to the next updating agent. Such a polling policy implies that, eventually after a preliminary initialization cycle, at each time instant the "agent in charge" always knows the whole aggregate vector g(t-1) and the past whole aggregate state vector x(t-1)

S-CG Algorithm – AGENT i REPEAT AT EACH TIME $t=k\tau$, k=0,1,...IF (k mod N) == i 1.1 RECEIVE g(t-1) AND x(t-1) FROM THE PREVIOUS AGENT IN H

$$z_i(t) = H_i^z x_i(t)$$

$$c_i(t) = H_i^c x_i(t) + L_i g_i(t)$$

• x_i is the state vector

• $z_i(t) := [z_i^x(t), z_i^y(t)]^T$ is the output vector that is required to track the reference vector r_i and it's subject to collision avoidance constraint

 $||z_{i}(t) - z_{j}(t)||_{\infty} > d \quad \forall i, j(i \neq j) \quad and \quad t \in \mathbb{Z}_{+}$

• $g_i(t) := [g_i^x(t), g_i^y(t)]^T$ is the manipulable reference vector that, in the absence of constraints, equals r_i

• c_i is the local constrained vector that has to fulfill the set membership constraints $c_i \in C_i$ where C_i is a convex and compact set.

ASSUMPTIONS:

A1. Each system is asymptotically stable (i.e. the system is pre-compensated)A2. Each system is offset free

AGENTS AND COMMUNICATION NETWORK:

• Each subsystem is governed by an independent agent. • Agents are connected by means of a communication network modeled by an undirected communication graph $\mathcal{G} = (\mathcal{A}, \mathcal{B})$.

• It is assumed that two connected agents can directly share information.

<u>**GOAL:</u>** Locally determine, at each time *t* and for each agent, a modified reference signal g_i as the best approximation of the desired reference r_i that ensures constraints fulfilment.</u>

2. Centralized Command Governor for collision avoidance

1.2 SOLVE $g_i(t) = \arg\min_{a_i} \left\| g_i - r_i(t) \right\|_{\Psi_i}^2$ subject to: $\left\{ \left[g_1^T (t - \tau), \dots, g_i, \dots, g_N^T (t - \tau)^T \right], T(\cdot) \right\} \in V(x(t))$ 1.3 APPLY $g_i(t)$ 1.4 SEND THE UPDATED g(t) TO THE NEXT AGENT ELSE 2.1 APPLY $g_i(t) = g_i(t-\tau)$

 $\begin{array}{l} \mbox{Graph \mathcal{A} and} \\ \mbox{Hamiltonian} \\ \mbox{Cycle \mathcal{H}} \end{array}$

<u>4. Example</u>

A system consisting of three decoupled particle masses is considered. The system is described by equations: $m_i \ddot{x}_i = F_i^x$

 $\begin{array}{c} m_i x_i = F_i \\ m_i \ddot{y}_i = F_i^y \end{array}$

Where (x_i, y_i) $i \in A = \{1, 2, 3\}$ are the coordinates of the i-th mass position w.r.t a cartesian reference and (F_i^x, F_i^y) the components along the same reference frame of the forces acting as inputs for subsystems.

These three masses are required to reach respectively points $r_1 = [-5, 0]^T$, $r_2 = [5, 0]^T$, $r_3 = [0, 5]^T$ complying with the following constraints:

- Input saturation constraints: $\left|F_{i}^{j}(t)\right| \leq 2 [N] \quad j = x, y, i \in \mathcal{A}$

- Collision Avoidance Constraints: $\max\{(x_i(t) - x_j(t)), (y_i(t) - y_j(t))\} \ge 1[m] \ i, j \in \mathcal{A}, i \neq j$

Standard centralized solutions to the problem, without considering collision avoidance constraints, have been achieved in [1], [2].

Here we present a Command Governor able to handle collision avoidance constraints. Let consider the global system

$$\begin{aligned} x(t+1) &= \Phi x(t) + Gg(t) \\ z(t) &= H^z x(t) \\ c(t) &= H^c x(t) + Lg(t) \end{aligned}$$

where $x = [x_1^T, ..., x_N^T]^T$, $r = [r_1^T, ..., r_N^T]^T$, $g = [g_1^T, ..., g_N^T]^T$, $z = [z_1^T, ..., z_N^T]^T$, $c = [c_1^T, ..., c_N^T]^T$ are the aggregate vectors arising from the composition of the N subsystems. The problem is to select a suitable reference $g(t) := \underline{g}(r(t), x(t))$ according to following constraints $c(t) \in \mathcal{C}$

 $z(t)\in\mathcal{Z}$

where $\mathcal{C} := \{\mathcal{C}_1 \times \ldots \times \mathcal{C}_N\}$ and $\mathcal{Z} := \{z : ||z_i - z_j||_{\infty} > d \quad \forall i, j \in \mathcal{A}(i \neq j)\}$.

The set \mathcal{Z} can be manipulated in order to obtain **mixed integer** /linear constraints. Hence z belongs to \mathcal{Z} if it is contained in the *z*-projection of the set

 $\bar{\mathcal{Z}}(d) := \begin{cases} \forall i, j | i > j : \quad z_i^x - z_j^x \ge d - \mu T_{ij}^1 \\ and \ z_i^y - z_j^y \ge d - \mu T_{ij}^2 \\ and \ z_j^x - z_i^x \ge d - \mu T_{ij}^3 \\ and \ z_j^y - z_i^y \ge d - \mu T_{ij}^4 \\ and \ \sum_{y=1}^4 T_{ij}^p \le 3 \end{cases}$

where $T := [T_{ij}^1, T_{ij}^2, T_{ij}^3, T_{ij}^4]$

The reference g(t) is applied according a receding horizon fashion once chosen in a family of constant virtual sequences $g(\cdot) = \{g(k) \equiv g \in \mathcal{W}_{\delta}, \forall k \leq k_0\}$ in order that future predictions

 $x(k, x(t), g) := \Phi^k x(t) + \sum_{i=0}^{k-1} \Phi^{k-i-1} Gg , \ c(k, x(t), g) := H^c x(k, x(t), g) + Lg \text{ and } h(t) = 0$

 $z(k, x(t), g) := H^z x(k, x(t), g)$ satisfy constraints within a fixed horizon k_0 and the equilibrium solutions $x_g := (I_n - \Phi)^{-1}Gg$ $z_g := H^z (I_n - \Phi)^{-1}Gg$ $c_g := H^c (I_n - \Phi)^{-1}Gg + Lg$ belong to the sets

 $\mathcal{C}^{\delta_1} := \mathcal{C} \sim \mathcal{B}_{\delta_1}$ $\bar{\mathcal{Z}}^{\delta_2} := \bar{\mathcal{Z}}(d + \delta_2)$

Finally the reference g is a solution of the following optimization problem

 $\hat{g}(t) = \arg\min_{(g,T(\cdot))\in\mathcal{V}(x(t))} \|g - r(t)\|_{\Psi_g}^2$

where

and

 $\mathcal{V}(x(t)) = \{ (g, T(\cdot)) \in \mathcal{W}_{\delta} : (z(k, x(t), g), T(k)) \in \bar{\mathcal{Z}}, \\ c(k, x(t), g) \in \mathcal{C}, \forall k \leq k_0 \}$

 $\mathcal{W}_{\delta} := \left\{ g \in \mathcal{R}^{m} : c_{g} \in \mathcal{C}^{\delta_{1}}, (z_{g}, T) \in \bar{\mathcal{Z}}_{M}^{\delta_{2}}, T \in \{0, 1\}^{4} \right\}$

Position of masses in S-CG case

Applied forces on y axis

ROG scheme	CPU Time
\mathbf{CG}	0.022
S-CG	0.0017

Numerical burdens: CPU time (seconds per step)

<u>Acknowledgements</u>

The project was supported by the European Commission under the Project Feednetback FP7"ICT"223866 (www.feednetback.eu).

<u>References</u>

[1] A. Bemporad, A. Casavola and E. Mosca, "Nonlinear Control of Constrained Linear Systems via Predictive Reference Management", *IEEE Trans. Automat. Control, Vol. 42, pp. 340-349, 1997.*

[2] A. Casavola, E. Mosca, and D. Angeli, "Robust command governors for constrained linear systems", IEEE Trans. Automat. Control, Vol. 45, pp. 2071-2077, 2000.

2nd IFAC Workshop on Estimation and Control of Networked Systems – NECSYS10

Annecy – France, 13-14 September 2010