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Hidden Markov Model and Baum Welch Algorithm 

Simulations & Discussion 

Distributed scenario:  
•  The knowledge of the topology of the network by 
the acting agents is of paramount importance 
•   Agents share information locally and need to 
coordinate with neighbors to attain global 
performance 
•  Unfeasible manual setup of medium/large scale 
networks with hundreds of nodes spread across 
the environment 
•   Necessity of learning the topology after the 
network has been deployed 

Camera networks: how do the set of camera 
sensor scenes relate to the environment topology? 

Graph description: 
•  Each node represents a “sensor area” 
•   Each edge stands for an admissible physical 
transition from one area to another 

Aim:  
•   Estimate the graph structure in terms of both 
nodes (i.e. areas of interest) and edges (i.e. the 
transition probability map) from camera 
observations, during the system calibration phase 

Assumptions:  
•  2D domain and K fixed cameras  
•  The observation is a binary string:  
entry in the i-th position is 1 if the i-th camera sees 
the target object, while it is 0 otherwise 
•   Different observations imply that the 
corresponding states of the system are 
distinguishable 

HMM: 
•  State set: 
•  Observation sequence: 

•  State transition probability:  

•  Observation symbol probability: 

•  Initial state distribution:  

    Model:   

Problem: given an initial model     adjust the model 
parameters            to maximize the probability of 
the observation sequence      given the model: 

Problem: given an observation sequence     infer 
the set of states     and the underlying graph     that 
constraints their transitions (whose node set is    ). 

Baum-Welch algorithm: 
•  Expectation-maximization method  
•  Forward var.:  
•  Backward var.:  
•  Estimation of the new model:  

Procedure:  
1.  An initial topological graph is built directly as a 

Markov model, in terms of nodes (states) and 
edges (state transitions) 

2.  The model is refined through BW algorithm 
updating the model parameters to better fit the 
observation sequence 

3.  The discovery of further states is then carried 
out by a node splitting procedure, observing the 
evolution in time of the trajectories 

Topological splitting: the same observation refers 
to the target in different positions. Distinct states 
that relate to the same observation, allows for 
different future evolution of the trajectory 

Logical Splitting: past transitions may suggest a 
preferential direction and allow the estimation of the 
future state visits (includes topological splitting) 

Orthogonality measure: 

A non-null probability among apparently non related 
states (i.e. unobserved transitions), is admitted to 
account for non perfect orthogonality measure and 
to insert “genetic variability” 

Scenario 1:  
•  Model of corridor where targets move back and forth at constant speed 
•  Exhibits the need of both topological splitting and logical splitting 
•    Beginning: η=0.5 (same probability of direction change at every step)  
•    End: η=1 (prediction capability is perfect) 

Scenario 2:  
•  2D area with random motion (direction and velocity) 
•  The splitting procedure does not lead to much improvement (from η= 0.25 
to η=0.3): the random walk of the target does not allow good prediction 
•  It is not possible to predict the future trajectory based on the observation 
history: depends only on the current observation 

Scenario 3:  
•  2D area with random motion (direction and velocity) with preferential paths 
•  Situation in between the corridor-like scenario and the 2D random motion 
•  Partial exploration but same number of distinct observations as Scenario 2 
•  Prediction capability improves of about 50%: from η= 0.3 to η=0.45 

After each splitting step the performance drops considerably due to the 
incorrect initialization of the matrix A, however, after a few steps of the 
Baum-Welch's algorithm, the performance improves becoming higher than 
before the splitting 

Performance index: average probability of making 
the correct prediction for a specific sequence of 
observations     of length T based on  


