Carnegie Mellon FNGINFFRING

Communication Complexity and Energy Efficient Consensus Algorithm

Yilin Mo, Bruno Sinopoli

Dept of Electrical and Computer Engineering, Carnegie Mellon University

(1)

(5)

(7)

Introduction

- Average consensus problems have been extensively studied by many researchers over the past few years.
- Usually consensus algorithms are designed to achieve the fastest convergence rate per iteration. Is it a good metric?
- The time needed for one iteration varies depending on the particular algorithm used.
- For certain application, e.g. wireless sensor networks, energy constraints may be more important than real-time requirements.
- Need to develop a new metric to assess energy efficiency of a consensus algorithm.

Deterministic and Gossip Algorithm

Complexity of Gossip Algorithms

- We define the projection matrix \mathcal{P} as
 - $\mathcal{P} \triangleq I \mathbf{11}'/N,$

 $\mathcal{W}_{ii} \triangleq \mathcal{P} W_{ii} \mathcal{P}$

• the matrix \mathcal{W}_{ii} as

- (10)

(14)

(9)

▶ and the linear operator \mathcal{A}_{Q} from $\mathbb{R}^{N \times N}$ to $\mathbb{R}^{N \times N}$ as

$$\mathcal{A}_{Q}(X) \triangleq \sum_{i,i} Q_{ij} \mathcal{W}_{ij} X \mathcal{W}_{ij}.$$
(11)

Let us define the spectral radius of the above operator as $\rho(Q)$. For the gossip algorithm, ω is given by

$$(Q) = -\frac{2\sum_{i\neq j} Q_{ij}}{\log(\rho(Q))}.$$
(12)

 $\mathbf{v}(\mathbf{Q})$ is still in fractional form. However we can prove the following inequality

- Consensus algorithms are usually classified into two categories: deterministic or stochastic.
- In this paper we characterize the energy efficiency of deterministic and gossip algorithms.
- We model the network as a connected undirected graph $G = \{V, E\}$.
- Deterministic Algorithm:
- Update Equation:

 $x_{k+1} = Px_k$.

- ▶ If *P* satisfies the following conditions, then average consensus will be achieved:
- **1**. $\lambda_1(P) = 1$ and $|\lambda_i(P)| < 1$ for all i = 2, ..., N.
- **2**. $P\mathbf{1} = \mathbf{1}$, i.e. **1** is an eigenvector of P.
- Moreover we assume P is symmetric and non-negative.
- The average number of communications per node for each iteration is defined as:

$$\overline{d}(P) \triangleq \sum_{i \neq j} \mathbb{I}_{\{P_{ij} \neq 0\}} / N.$$
 (2)

Gossip Algorithm:

- For each iteration, a pair of nodes (i, j) is selected with probability Q_{ij} .
- The pair exchanges information and updates its states to be the average of the two.

Define

 $W_{ii} = I - (e_i - e_i)(e_i - e_i)'/2$

$$\omega(\mathbf{Q}) \ge \omega(\tilde{\mathbf{Q}}),$$
 (13)

where Q is defined as

$$ilde{Q} = rac{1}{\sum_{i
eq j} Q_{ij}} [Q - diag(Q)].$$

Removing the null operation can reduce communication complexity. • Optimizing $\omega(Q)$ is equivalent to solving the following problem:

$\underset{Q \in S}{\text{minimize}}$	ho(Q)
subject to	$1'Q1 = 1, \ Q_{ii} = 0,$

which is convex and can be solved efficiently.

Communication Complexity Comparison between Deterministic and Gossip Algorithms

- Finding the optimal gossip algorithm is easy while finding the optimal deterministic algorithm is in general a hard problem.
- Can we compare the energy efficiency of these two algorithms?
- There exists a natural mapping between deterministic and gossip algorithms.

$$f: P \rightarrow Q$$

 $P \mapsto P/N$

 $\lambda_2(P) \geq \frac{16}{\overline{\overline{d}}(P)^2}.$

$$W_{ij} = I - (\mathbf{e}_i - \mathbf{e}_j)(\mathbf{e}_i - \mathbf{e}_j)'/2.$$
 (3)
where $\mathbf{e}_i \in \mathbb{R}^N$ is a vectors of all zeros with only the *i*th element equal to 1.
The update equation:

$$\boldsymbol{x}_{k+1} = \boldsymbol{W}_k \boldsymbol{x}_k, \tag{4}$$

where W_k is a random matrix and the probability that W_k equals W_{ii} is P_{ii} . ► We assume Q satisfies the following properties:

1.1'Q1 = 1.

2. Q is symmetric and non-negative.

▶ The accuracy of consensus at *k*th step is defined as:

$$\varepsilon_k \triangleq \sup_{y_0 \neq 0} y'_k y_k / (y'_0 y_0).$$

Communication Complexity

- Communication complexity measures the average number of communications needed to reach a specified accuracy.
- Let the accuracy be $\varepsilon > 0$. Stopping time T_{ε} is defined as

 $T_{\varepsilon} \triangleq \inf\{k : \mathbb{E}\varepsilon_k \leq \varepsilon\}.$ (6)

- Define c_k to be the number of communications incurred at the k^{th} iteration.
- We will indicate with Ω and ω the complexities of deterministic and gossip algorithms respectively.
- We define communication complexity as:

► The following condition is sufficient for $\Omega(P) \ge \omega(P/N)$

(15)

- Inequality (15) is true for a large class of networks. The main reason is that the condition does not depend on the size of the graph N.
- For most graphs, the gossip algorithm is more energy efficient than the deterministic one.

Illustrative Examples

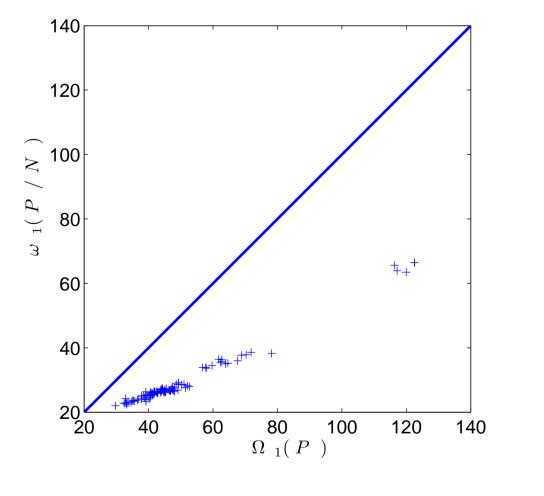


Figure: $\Omega(P)$ v.s. $\omega(P/N)$

- We use 100 randomly generated connected graphs of 10 vertices and 50 edges.
- The consensus matrix P is chosen of the following form:

 $P = I - \alpha L$,

where L is the Laplacian matrix of the graph with eigenvalues $\lambda_1(L) \geq \ldots \geq \lambda_{N-1}(L) > \lambda_N(L) = 0$ and

$$\Omega = \omega = \limsup_{\varepsilon \to 0^+} -\frac{\mathbb{E} \sum_{k=0}^{T_{\varepsilon}} c_k}{\log(\varepsilon)}.$$

The goal: Find the consensus algorithm with the lowest communication complexity.

Complexity of Deterministic Algorithms

For the deterministic consensus, Ω is given by $\Omega(P) == -\frac{Nd(P)}{2 \max_{i=2,\dots,N} \log(|\lambda_i(P)|)}.$ (8)

 \square $\Omega(P)$ is hard to minimize since it is in fractional form and contains d(P).

 $\alpha = 2/(\lambda_1(L) + \lambda_{N-1}(L)).$

Conclusion

- A new energy metric for consensus algorithms is defined and explicit formulas are provided to compute the communication complexity for both deterministic and gossip algorithms.
- Finding the optimal gossip algorithm with minimum communication complexity is formulated as a convex optimization problem. A non convex optimization problem needs to be solved to find its deterministic counterpart. A comparison between the complexity of deterministic and gossip algorithms
- is also provided, showing that gossip-based consensus is more desirable than deterministic consensus if energy efficiency is the main objective.

September 12-14, 2010, Annecy