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Abstract

• In this paper, we consider the problem of designing distributed
output-feedback controllers that achieve H2 and H∞ performance
objectives for a particular class of interconnected systems that are
formed by interactions over an arbitrary directed communication
network.

• The problem is formulated and analyzed in terms of the state-space
parameters for the sake of network realizability.

• For a particular class of discrete-time linear time-invariant intercon-
nected systems that are characterized by a structural property of
their state-space matrices, we provide sufficiency conditions for de-
signing stabilizing distributed controllers which can use the available
network along with the subsystems of the interconnected system.

• A parametrization is considered for the output-feedback linear dis-
tributed controllers that allows minimization of closed-loop H2 and
H∞ norms to be expressed as semi-definite programs (SDPs).

• If a solution exists for the SDPs, then the solution allows us to syn-
thesize the corresponding stabilizing distributed controller realizable
over the given network.

• In this design process, a trade-off is made between optimality and
network realizability of the distributed controller.

Interconnected systems
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Fig 2: Description of a subsystem in
the network

• A group of subsystems interacting over a given communication net-
work is referred to as a Networked or Interconnected system.

• For an interconnected system to be described over a network, it needs
to satisfy certain constraints.

• When the interconnected system is described by its transfer func-
tion, the constraints required for the system to be compatible with
the network are given by the corresponding delay and sparsity con-
straints (refer to [Rot05]).

• But these constraints are not sufficient for the system to be realizable
over the given network.

Network realizability

• If the transfer function of a given interconnected system can be ex-
pressed in state-space form as separate subsystems interacting over
a given network, then the system is said to be network realizable.

• In some special cases, for example when the communication network
corresponds to an acyclic graph, one can realize the transfer function
of the interconnected system over the given network (refer to [SL09]).

• For general interconnected systems, even if the transfer function sat-
isfies the required delay and sparsity constraints, it is not known how
to realize the system over the network.

• In this paper, we design interconnected systems compatible with the
network interconnection by imposing constraints on their state-space
parameters.

• We show that, realizability of an interconnected system over a given
network (with the given state, input and output partitions), corre-
sponds to its state-space matrices being structured according to the
graph (i.e. sparsity constraints have to be imposed on the state-space
matrices based on the adjacency matrix of the graph).

Example

3

1

2

Fig 3: A three node system

Consider a simple three node interconnected system with a communication
network described by a digraph as shown in Fig. 3 with adjacency matrix
[

1 1 0
1 1 1
0 0 1

]

. This means that the subsystems at node 1 and 2 can exchange

messages while the one at node 3 can send messages to the subsystem at
node 2.

Let the dynamics of the three subsystems be given by the following state-space equations
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where ηij(k) denote the messages passed over the network from node i to node j at the kth instant. Combining
the above dynamics, the resultant dynamics for the three node interconnected system is given by
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• Following the simple algebra to obtain the dynamics of the interconnected system, one can observe that
the sparsity of the A matrix matches with the sparsity of the adjacency matrix.

• This observation is presented in the paper for a general setting where the dimensions of the local state,
control input and output vectors of each subsystem can be different.

• The state-space representation of a given interconnected system is compatible with the given network
interconnection if and only if the sparsity patterns of the state-space matrices comply with the adjacency
matrix of the given graph.

The transfer function matrix corresponding to this interconnected system is given by
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• It can be observed that the above transfer function satisfies the delay and sparsity constraints that were
mentioned earlier.

• But given the transfer function alone, it is non-trivial to obtain a realization that satisfies the sparsity
constraints on the corresponding state-space matrices.

• Also note that the network realization should not introduce more unstable poles than that of the transfer
function.

This example is given to emphasize the fact that network realization of even simple interconnected systems
can be non-trivial. For this reason, even though frequency domain approaches exist for solving optimal
distributed control problems, it should be noted that the solution may not be realized over the given network.

Main result

• In this paper, we consider interconnected systems with state-space
representation given by
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where A, Bw, Cz and Dzw have a sparsity structure based on the
network interconnection, while Bu, Cy, Dzu and Dyw have a block
diagonal structure.

• To overcome the problems of network realization, we propose a dis-
tributed controller design strategy where sparsity constraints are im-
posed on the state-space matrices of the controller.

• The following theorem provides a sufficiency condition for the exis-
tence of a stabilizing distributed controller that can also be realized
over the given network while minimizing the H2 norm of the closed-
loop transfer function.

• This result is an application of the controller design approaches dis-
cussed in [SGC97] for a distributed setting. A similar result can be
obtained in the case of H∞ norm too.

Theorem

Given an interconnected system P with state-space structure defined
by (1). If there exist matrices X , Y that are symmetric and block di-
agonal; Q, L, F , R that have sparsity structures based on the network;
and a symmetric matrix W , where the dimensions of the constituent
matrices of the block-diagonal and structured matrices are appropri-
ately assigned, such that
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then there exists a stabilizing controller K that is realizable on the
given network, such that
‖Fl (P,K)‖2

2 < µ.

Remarks

• The main idea of the paper is to point out the importance of net-
work realizability and the hidden difficulties in a frequency domain
approach for designing distributed controllers over a network.

• In this paper, we considered a simple class of plants to make the
analysis easier and yet convey the importance of realizability during
controller design and synthesis.

• The sufficiency condition given in this paper ensures that if the semi-
definite program has a solution, then there exists a stabilizing dis-
tributed controller that can be realizable over the given network.
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