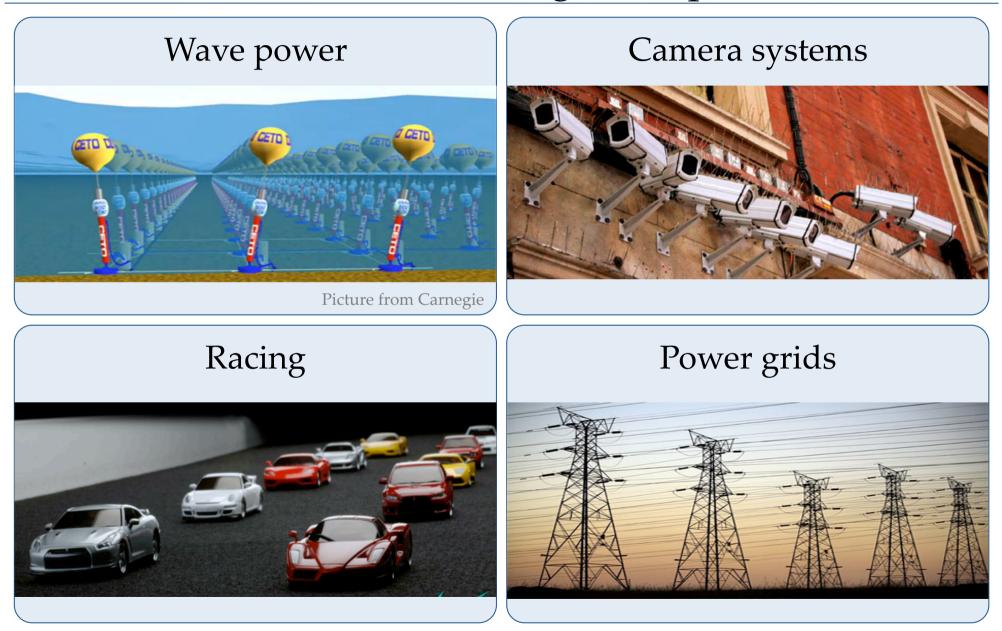
Real-time Optimization for Distributed Model Predictive Control

Manfred Morari & Colin Jones

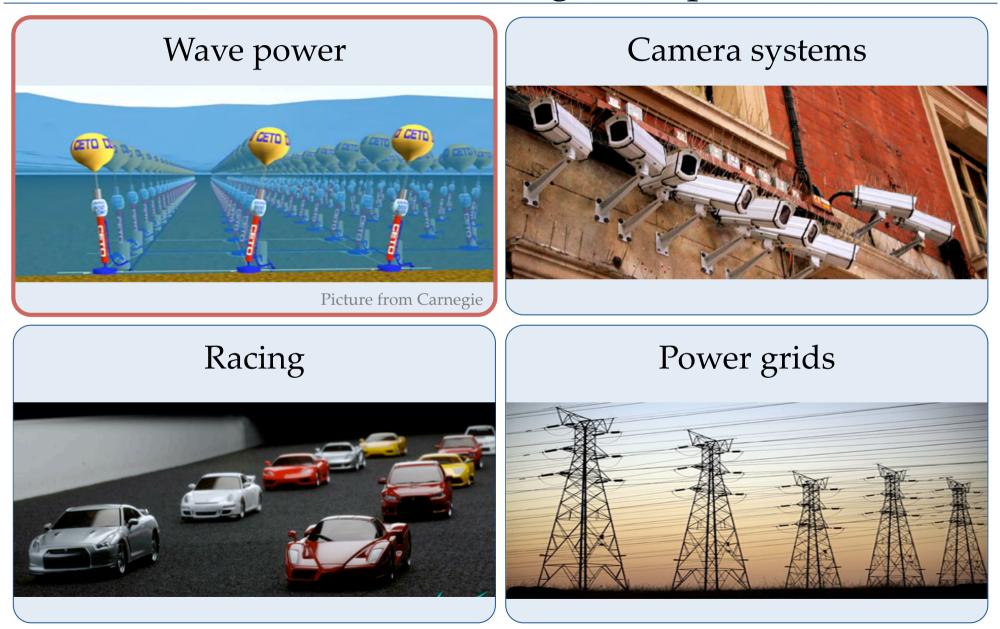
Christian Conte, Davide Raimondo, Stefan Richter, Sean Summers, Joe Warrington, Melanie Zeilinger

Automatic Control Laboratory, ETH Zürich

Distributed MPC : Motivating Examples

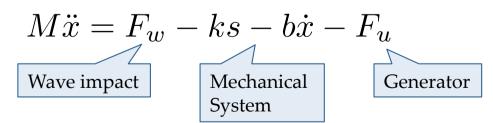


Distributed MPC : Motivating Examples

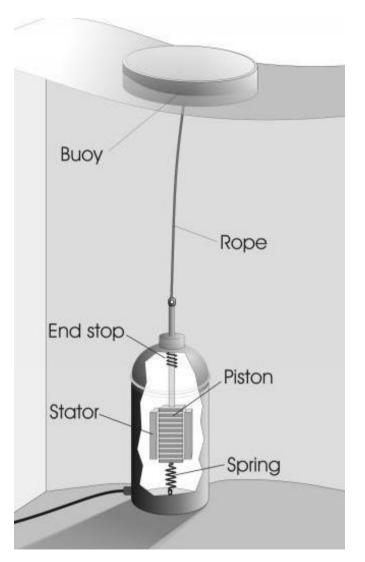


Wave power: The heaving buoy

- ~1MW per meter of wave crest¹
 - Energy density ~800x wind
- Global potential ~10 TW²
 - Exploitable $> 2TW^3$
 - 20% world consumption⁴
- Floating buoy attached to generator on seabed
 - Heaving motion \Rightarrow Electrical energy
 - System dynamics \Rightarrow ~Second order



- 1. Survey of Energy Resources, WEC, 2007
- 2. Panicker, Power resource estimate of ocean surface waves (2003)
- 3. Thorpe, Wave Power: Moving towards Commercial Viability (1999)
- 4. BP statistical review of world energy (2008)



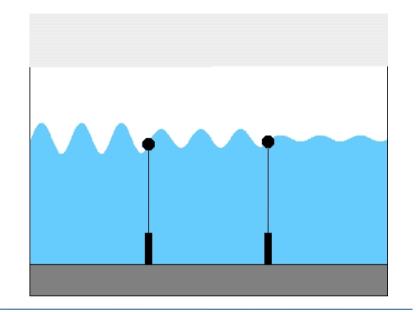
Picture courtesy of Uppsala University

Wave farms are highly coupled

Combined cost function

– Maximize total energy

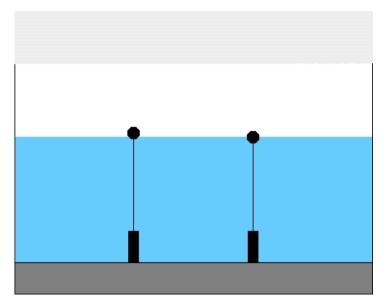
$$\max E_{\text{total}} := \sum_{i} \int_{t} \text{power}_{i}$$



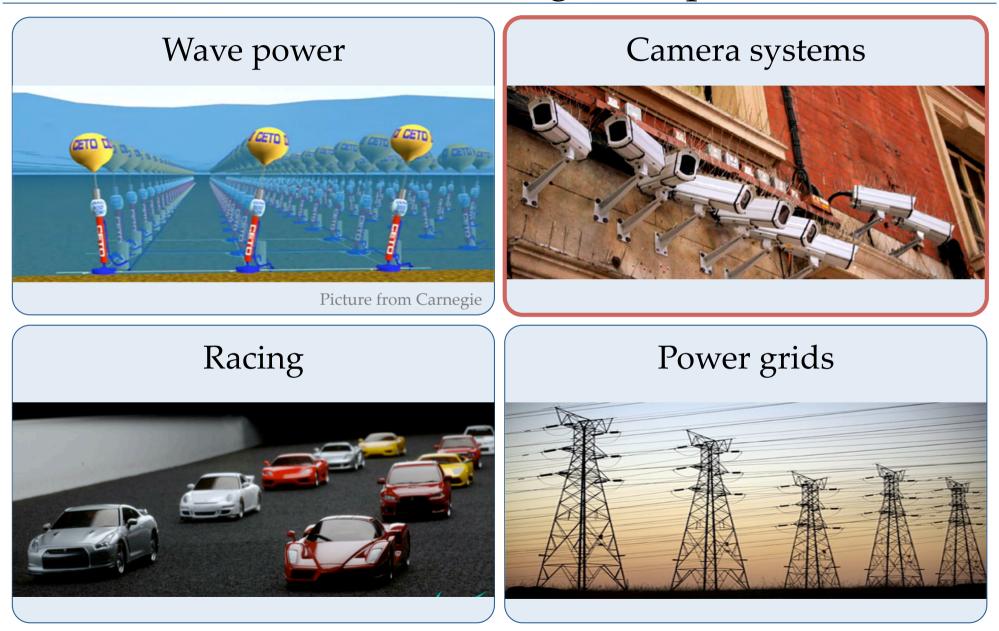
Coupled dynamics

- Buoy causes a circular wave
- Perturbs motion of adjacent buoys

$$\dot{x}_i = f(x_1, \dots, x_n, u_1, \dots, u_n)$$



Distributed MPC : Motivating Examples

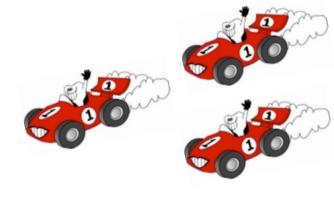


Smart camera networks : Surveillance and motion capture

Goal: cooperatively detect and track human targets

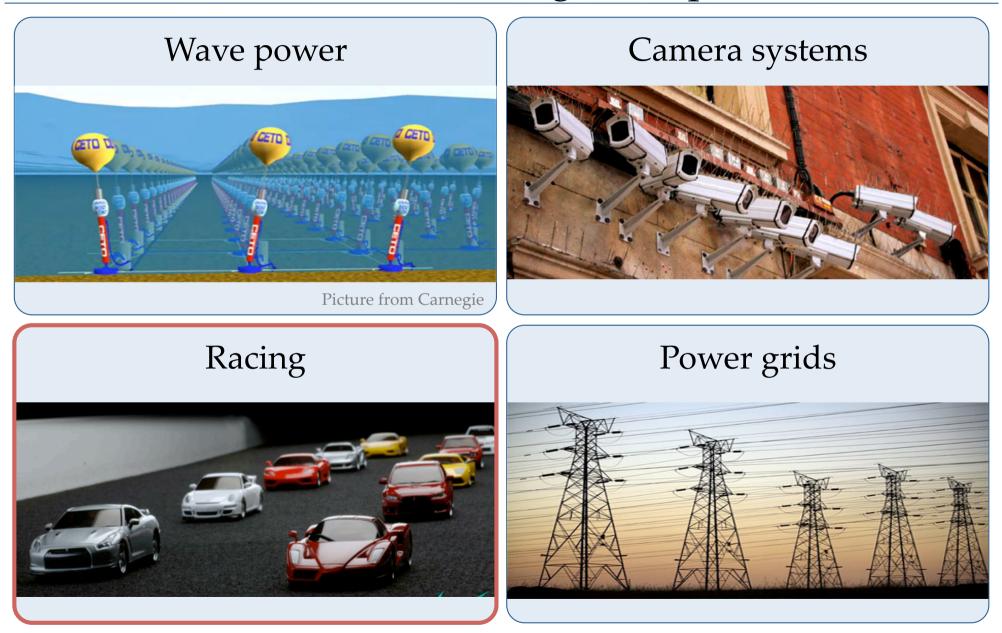
- Unsupervised identification of camera network topology
- Distributed estimation of a relative mapping between adjacent cameras' field of views
- Optimal coverage of monitored site to search for anomalous events
- Moving object tracking with PTZ cameras and target hand-off

IfA Vision Lab



- Pan-tilt-zoom Ulisse Compact Cameras
 Support of Videotoc Sup A
- Support of Videotec S.p.A.

Distributed MPC : Motivating Examples



Micro-scale Race Cars

- 1:43 scale cars 106mm
- Top speed: 5 m/s
 (774 km/h scale speed)
- Full differential steering
- Position-sensing: External vision
- Sampling rate: 60Hz

Project goals:

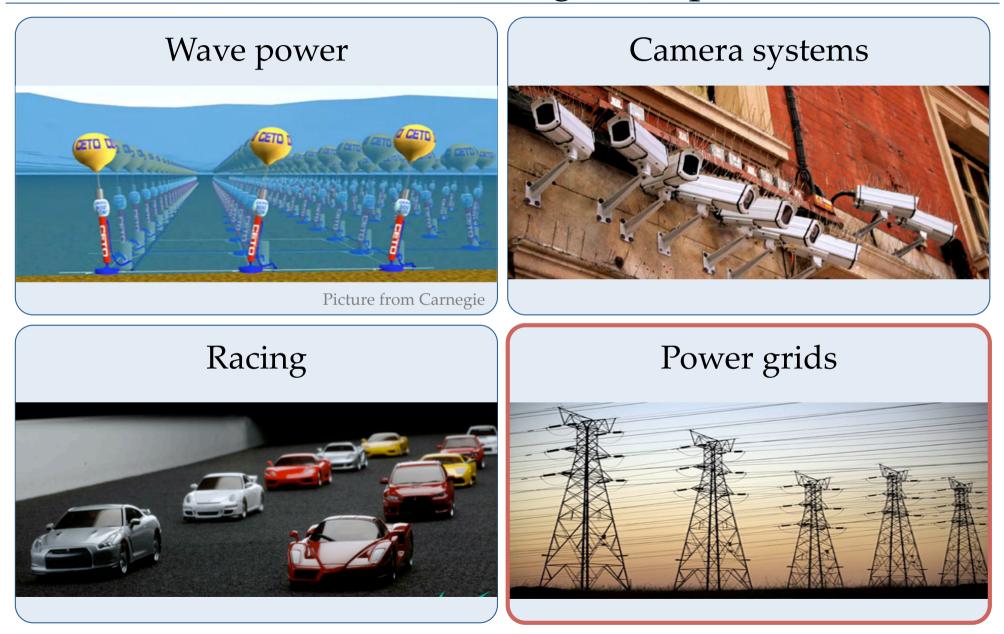
- 1. Beat all human opponents!
- 2. Demonstrate real-time MPC maximizing car performance
- 3. Plan optimal path online in dynamic race environment

Challenges: Highly nonlinear dynamics Multiple unpredictable opponents High-speed planning and control

Optimal Race Planning

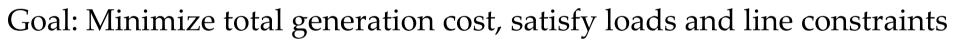
[S. Colass, F. Engler, M. Osswald and C.N. Jones 2009]

Distributed MPC : Motivating Examples



Price Control of Power Grids

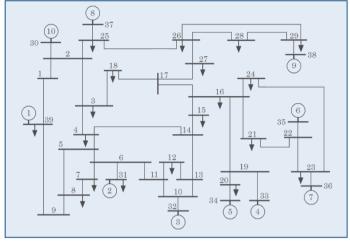
- Current grid:
 - Many loads, generators, transmission lines
 - Strongly coupled but with own objectives
- Market mechanisms break as renewables e.g., wind power share increases:
 - Flow schedule violates line limits
 - Failure to establish a clearing price



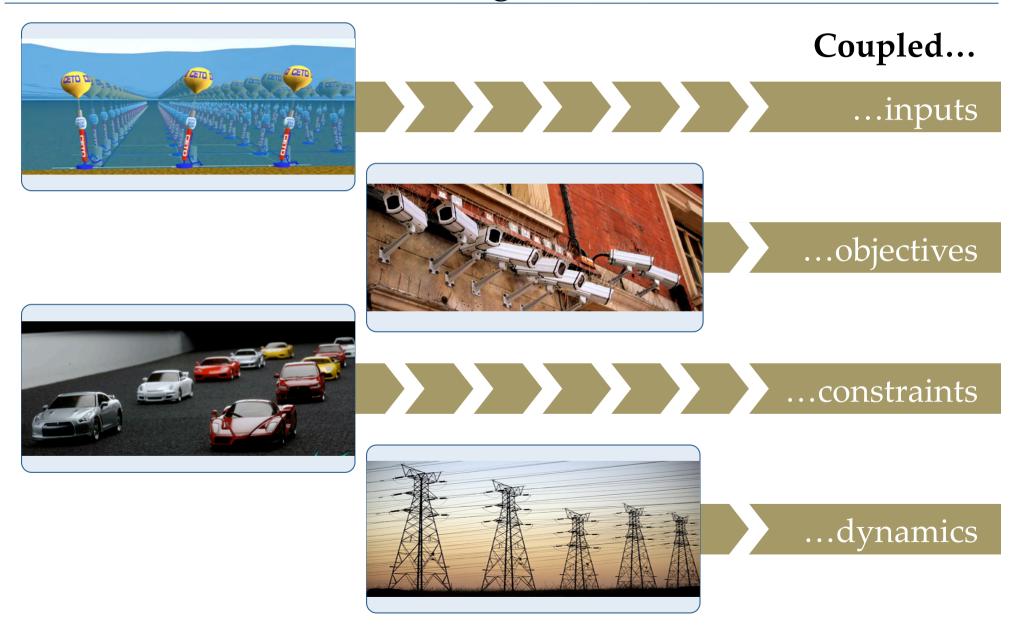
- Keep complex generation decisions *localized*:
 - Cost function of operating point, penalties for output changes, startup/shutdown events, capacity for ancillary services...

Idea: Distribute optimization and communicate via price signals

[J. Warrington and S. Mariethoz, 2009] E-PRICE: Price-based Control of Electrical Power Systems



Distributed MPC Challenges



Execute control action with objectives

- Stability
- Constraint satisfaction
- Performance guarantee
- Real time execution guarantee

Outline

Motivating examples

A key challenge : Fast, fixed-time optimization

- Interior-point methods : Milli-seconds
- Fast gradient methods : Micro-seconds
- Explicit methods : Nano-seconds

Summary

High-speed Model Predictive Control

$$J^{*}(x) = \min_{\mathbf{u} = [u_{0}, \dots, u_{N-1}]} V_{N}(x, \mathbf{u}) \triangleq \frac{1}{2} x_{N}^{T} P x_{N} + \sum_{i=0}^{N-1} \frac{1}{2} x_{i}^{T} Q x_{i} + \frac{1}{2} u_{i}^{T} R u_{i}$$

s. t. $x_{i+1} = A x_{i} + B u_{i}$, linear nominal system
 $(x_{i}, u_{i}) \in \mathbb{X} \times \mathbb{U}$, polytopic constraints
 $x_{N} \in \mathcal{X}_{F}$, terminal set
 $x_{0} = x$,

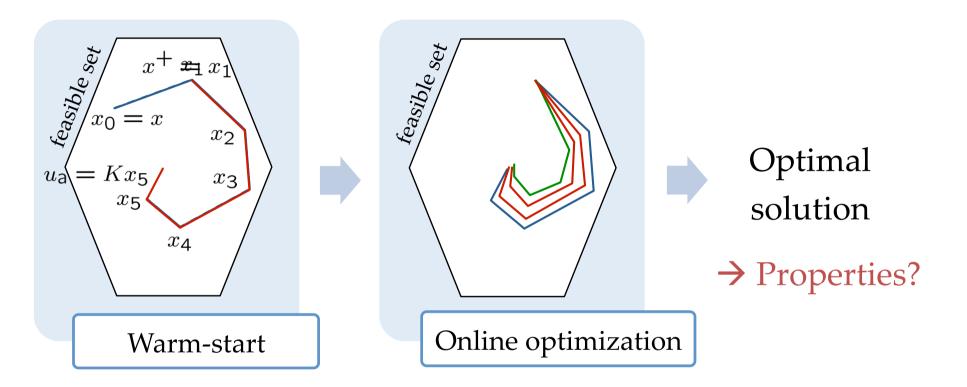
Optimal MPC controller:

- Input and state constraints are satisfied
 - \rightarrow Recursive feasibility
- $J^*(x)$ is a convex Lyapunov function
 - \rightarrow Stability of the closed-loop system

Goal: Feasibility/Stability/Tracking for suboptimal MPC controller with real-time constraint

[M.N. Zeilinger, C.N. Jones, D. M. Raimondo, M. Morari, CDC 2009]

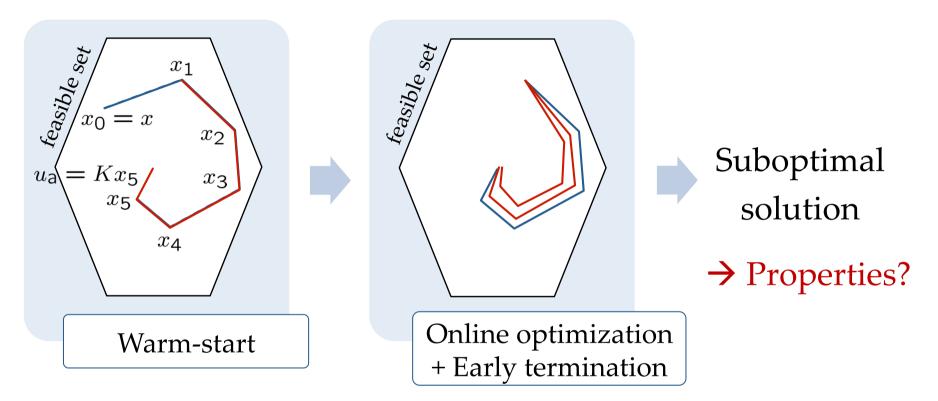
Optimal MPC scheme (Not Real-time!)



Optimal MPC:

- Recursively feasible
- Stabilizing
- Unknown computation time...

Real-time MPC scheme

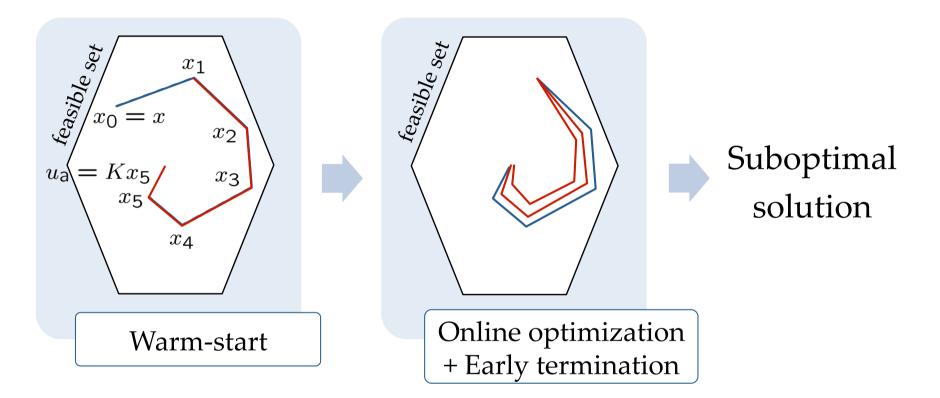


General approach for real-time MPC:

- Use of warm-start method
- Exploitation of structure inherent in MPC problems
- Early termination of the online optimization

[[]Ferreau et al., 2008], [Wang et al., 2008],...

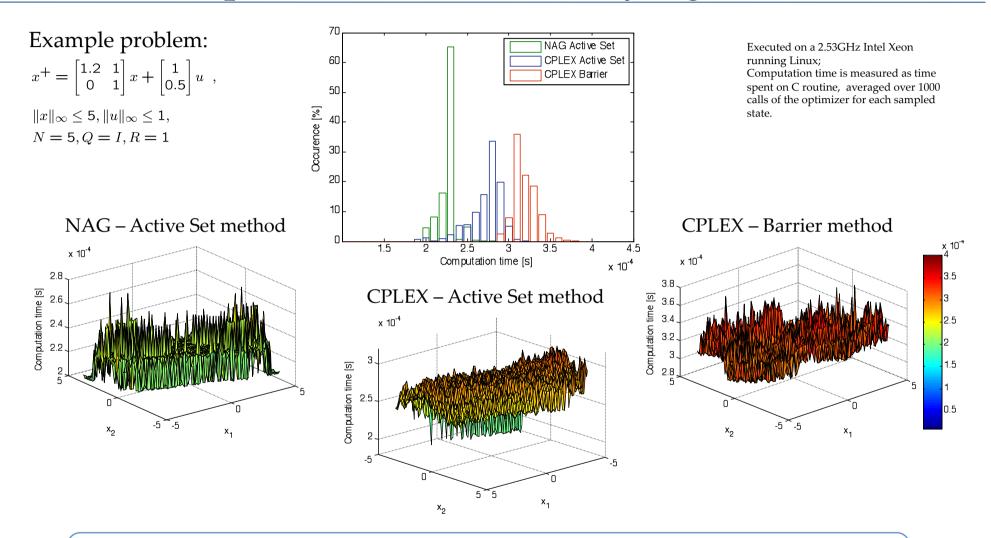
Real-time MPC scheme - Current methods



Suboptimal solution during online optimization steps

- can be infeasible
- can destabilize the system
- can cause steady-state offset

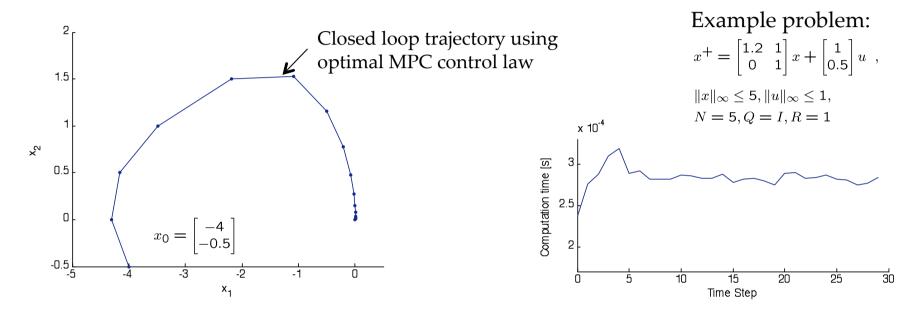
Online computation times for varying states



→ Computation times for solving the optimal MPC problem vary with the state of the system

Example: Effects of limited computation time

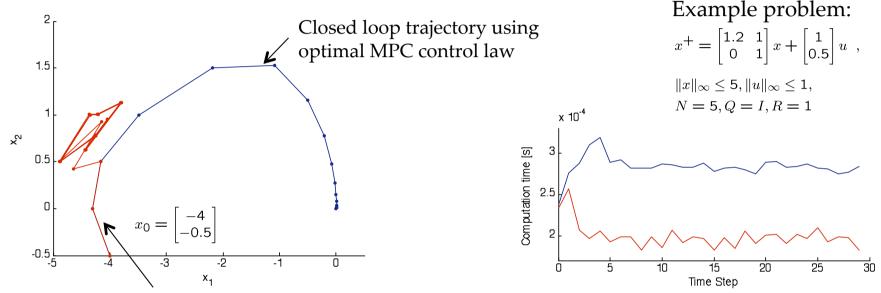
Solve MPC problem using CPLEX Active Set method



Now: Require computation time to be less than 27ms at every sampled state → Restrict algorithm to 5 online optimization steps

Example: Effects of limited computation time

Solve MPC problem using CPLEX Active Set method



Closed loop trajectory using suboptimal MPC control law, with a limit of 5 online optimization iterations

 \rightarrow System does not converge to the origin

Limits on the online computation time can destroy the stability properties of optimal MPC

Real-time MPC with stability and robustness guarantees

- Guarantees on
 - Real-time ← Early termination
 - Feasibility
 - Stability
 - Steady-state tracking
- Implementation for large-scale systems
- Fast implementation

Real-time MPC method

- Constraint satisfaction

Consider uncertain system: $x^+ = Ax + Bu + w$ where $w \in W$ is a bounded disturbance.

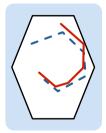
- Robust MPC: Initial feasible solution for all disturbances e.g. [Limon et *al.*, 2009] and references therein
- Optimization maintains feasibility at all times

Here: Tube-based robust MPC: [Mayne et al., 2005]

$$\min_{\{\bar{x}_0,\bar{\mathbf{u}}\}} \bar{V}_N(x,\bar{x}_0,\bar{\mathbf{u}}) \triangleq \frac{1}{2} \bar{x}_N^T P \bar{x}_N + \sum_{i=0}^{N-1} \frac{1}{2} \bar{x}_i^T Q \bar{x}_i + \frac{1}{2} \bar{u}_i^T R \bar{u}_i$$

s.t. $\bar{x}_{i+1} = A\bar{x}_i + B\bar{u}_i$, $(\bar{x}_i, \bar{u}_i) \in \bar{\mathbb{X}} \times \bar{\mathbb{U}}$, $\bar{\mathbb{X}} = \mathbb{X} \ominus \mathcal{Z}, \bar{\mathbb{U}} = \mathbb{U} \ominus K\mathcal{Z}$ $\bar{x}_N \in X_f$, $x \in \bar{x}_0 \oplus \mathcal{Z}$,

→ Ellipsoidal invariant sets can be computed for all system sizes
→ Resulting optimization problem is a convex QCQP





Real-time MPC with stability and robustness guarantees

- Guarantees on

 - Stability ← Lyapunov constraint
 - Steady-state tracking Lyapunov constraint
- Fast implementation

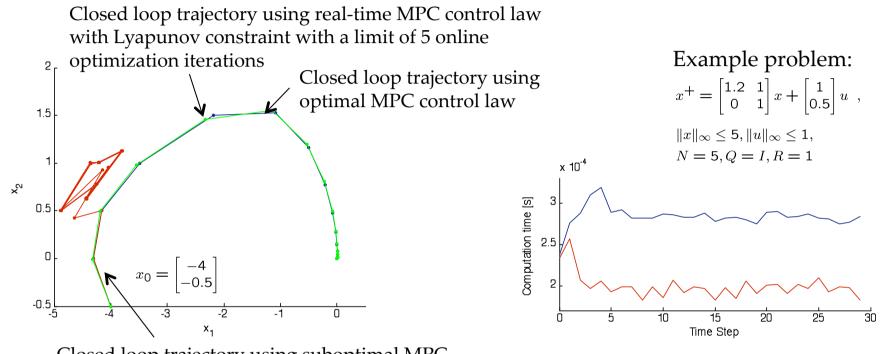
Real-time MPC - Fast Implementation

- Tracking formulation and Lyapunov constraint significantly modify structure of matrices in Newton step computation compared to literature.
 [Rao et al., 1998, Wang et al., 2008]
- Matrices can be transformed into arrow structure, which can be solved efficiently with same complexity as standard MPC problems [Rao et *al.*,1998; Hansson, 2000; Wang et *al.*,2008]
 - → Fast solution of the tracking problem with guaranteed stability for all suboptimal iterates → for all time constraints!
- Custom solver in C++ was developed extending fast MPC solver described in literature [Wang et *al.*, 2008]

→ Computation times that are faster or equal compared to methods with no guarantees

[M.N. Zeilinger, C.N. Jones, D. M. Raimondo, M. Morari, CDC 2009]

Example: Effects of limited computation time



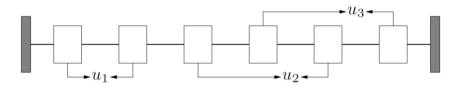
Closed loop trajectory using suboptimal MPC control law, with a limit of 5 online optimization iterations

Limits on the online computation time can destroy the stability properties of optimal MPC

Numerical Examples

Oscillating masses example

• Problem: 12 states, 3 inputs



• Fast MPC with guarantees: horizon N=10

→ Computation of 5 Newton steps in 2 msec Comparison: CPLEX 26 msec, SEDUMI 252 msec
Closed loop performance loss in % for varying iteration numbers

 k_{max} 12345678 \rightarrow Optimal $\triangle J_{cl}$ 1.391.321.100.880.700.550.440.33~44 iterations

Random example

- Problem: 30 states, 8 inputs, horizon N=10
 - → QCQP with 410 optimization variables and 1002 constraints
 - → Computation of 5 Newton steps in **10 msec**

[M.N. Zeilinger, C.N. Jones, D. M. Raimondo, M. Morari, CDC 2009]

Outline

Motivating examples

A key challenge : Fast, fixed-time optimization

- Interior-point methods : Milli-seconds
- Fast gradient methods : Micro-seconds
- Explicit methods : Nano-seconds

Summary

Structured Optimization: Input constrained MPC

- Linear system, input constraints only
- Gradient-based optimization
 - Very simple
 - Easy to parallelize
 - Fast for large number of states

⇒ Can pre-compute required number of online iterations

Require:
$$U_0 \in \mathbb{U}^N$$
, $V_0 = U_0$
1: for $i = 1$ to i_{\max} do
2: $U_i = \pi_{\mathbb{U}^N} \left(V_{i-1} - \frac{1}{L} \nabla J_N(V_{i-1}; x) \right)$
3: $V_i = U_i + b_i (U_i - U_{i-1})$
4: end for

[Y. Nesterov, 1983] [S. Richter, C.N. Jones and M. Morari, CDC 2009]

- Work per iteration
 - 1 matrix-vector product
 - 2 vector sums
 - 1 projection (more later)

Fast Gradient Method for MPC

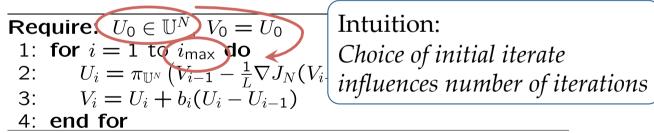
Observe:

Input-constrained MPC problem has a "simple" feasible set

$$\mathbb{U}^{N} := \mathbb{U} \times \mathbb{U} \times \ldots \times \mathbb{U}$$

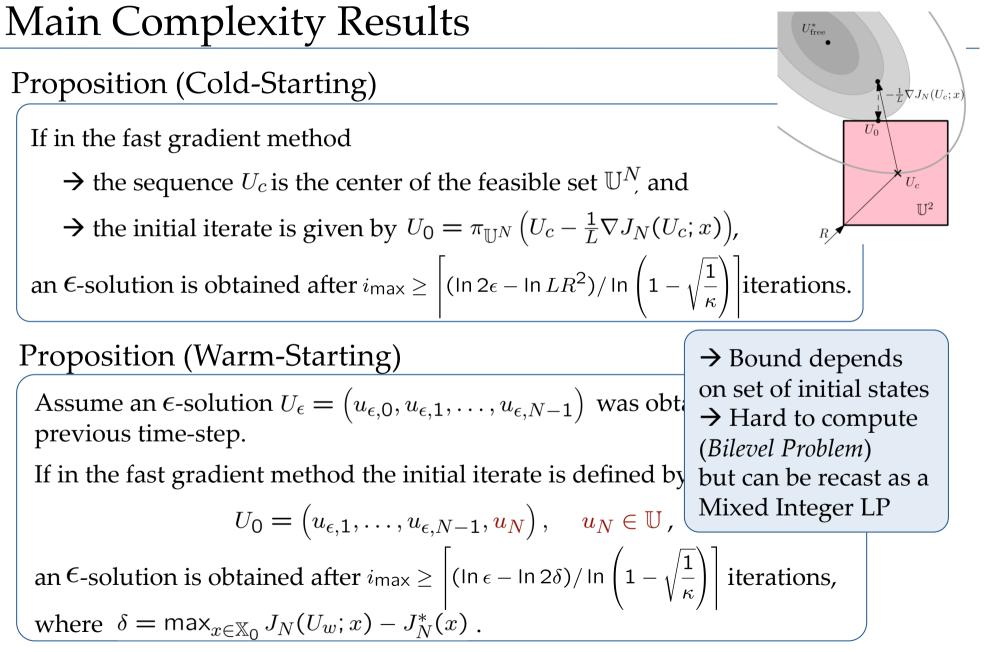
$$\Rightarrow \text{ Projection can be separated: } \pi_{\mathbb{U}^{N}} \left(\overline{U} \right) = \begin{bmatrix} \pi_{\mathbb{U}} \left(\overline{u}_{0} \right) \\ \pi_{\mathbb{U}} \left(\overline{u}_{1} \right) \\ \vdots \\ \pi_{\mathbb{U}} \left(\overline{u}_{N-1} \right) \end{bmatrix}, \text{ where } \overline{U} = \begin{bmatrix} \overline{u}_{0} \\ \overline{u}_{1} \\ \vdots \\ \overline{u}_{N-1} \end{bmatrix}$$

Missing Pieces



Two Initialization Strategies \Leftrightarrow Two Different Lower Bounds on i_{max} :

- \rightarrow Cold-Starting
- → Warm-Starting

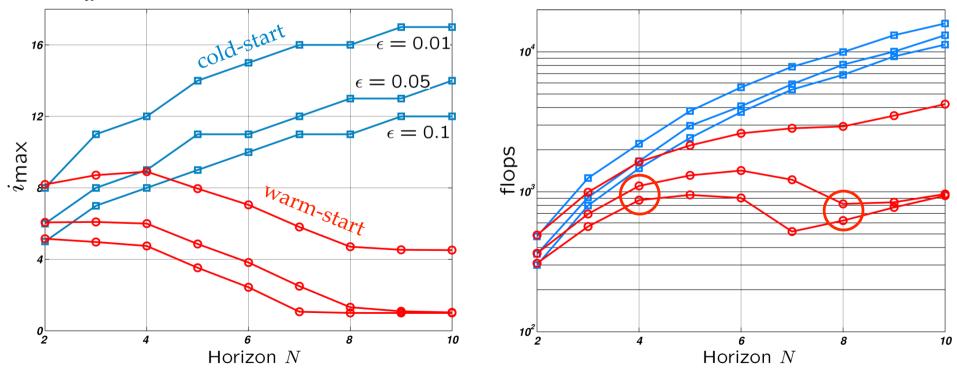


[S. Richter, C.N. Jones and M. Morari, CDC 2009]

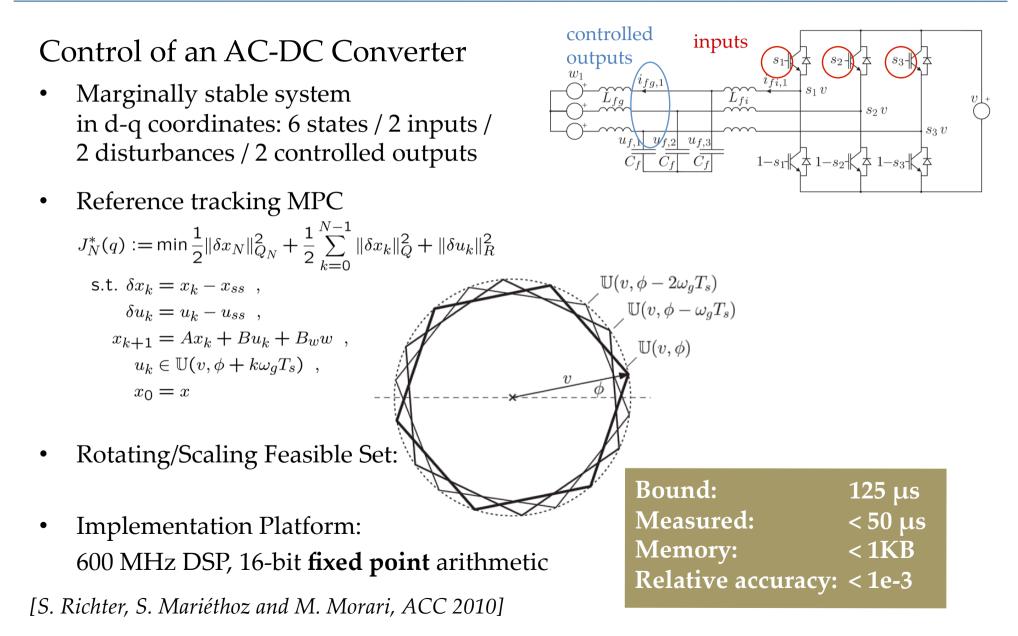
Illustrative Example

4 states/2 inputs system:
$$x^+ = \begin{bmatrix} 0.7 & -0.1 & 0.0 & 0.0 \\ 0.2 & -0.5 & 0.1 & 0.0 \\ 0.0 & 0.1 & 0.1 & 0.0 \\ 0.5 & 0.0 & 0.5 & 0.5 \end{bmatrix} x + \begin{bmatrix} 0.0 & 0.1 \\ 0.1 & 1.0 \\ 0.1 & 0.0 \\ 0.0 & 0.0 \end{bmatrix} u + w$$

- → Set of initial states $X_0 = \{x \mid ||x||_\infty \le 10\}$
- → Set of feasible inputs $\mathbb{U} = \{u \mid ||u||_{\infty} \leq 1\}$
- → State disturbance $w \in \mathbb{W} = \{w \mid ||w||_{\infty} \le 0.25\}$
- → Weight matrices $Q = I_n$, $R = 0.1I_m$



Application to AC-DC Converter



Outline

Motivating examples

A key challenge : Fast, fixed-time optimization

- Interior-point methods : Milli-seconds
- Fast gradient methods : Micro-seconds
- Explicit methods
- : Nano-seconds

Summary

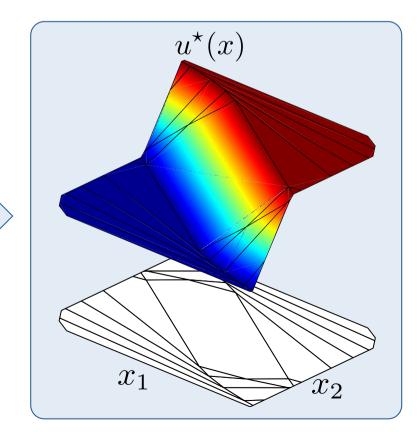
Explicit MPC : Online => Offline Processing

- Optimization problem is function parameterized by state
- Control law piecewise affine for PWA systems/constraints
- Pre-compute control law as function of state x

Result : Online computation dramatically reduced

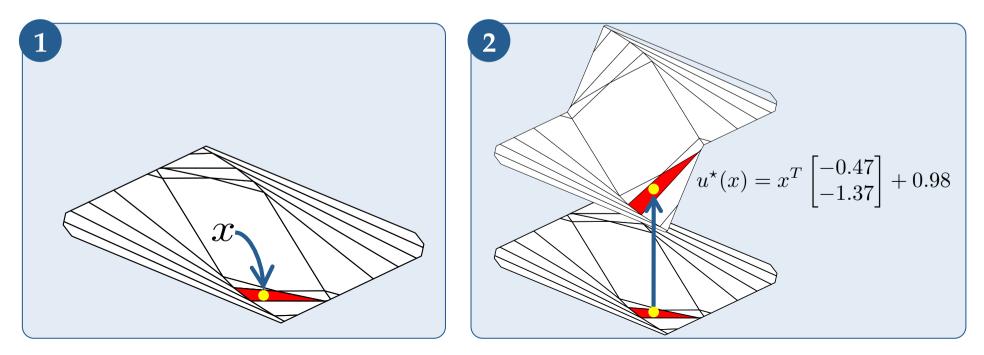
$$\begin{aligned} u^{\star}(x) &= \underset{u_{i}}{\operatorname{argmin}} V_{N}(x_{N}) + \sum_{i=0}^{N-1} l(x_{i}, u_{i}) \\ \text{s.t. } x_{i+1} &= f(x_{i}, u_{i}) \\ (x_{i}, u_{i}) \in \mathcal{X} \times \mathcal{U} \\ x_{N} \in \mathcal{X}_{N} \\ x_{0} &= x \end{aligned}$$

[M.M. Seron, J.A. De Doná and G.C. Goodwin, 2000] [T.A. Johansen, I. Peterson and O. Slupphaug, 2000] [A. Bemporad, M. Morari, V. Dua and E.N. Pistokopoulos, 2000]



Online speed depends on number of control law regions

- Online evaluation reduced to:
 - Point location
 - Evaluation of affine function
- Online complexity is governed by point location
 - Function of number of regions in cell complex
 - Milli- to microseconds possible only *if small number of regions!!*



Real-time \Leftrightarrow synthesize control law of *specified* complexity

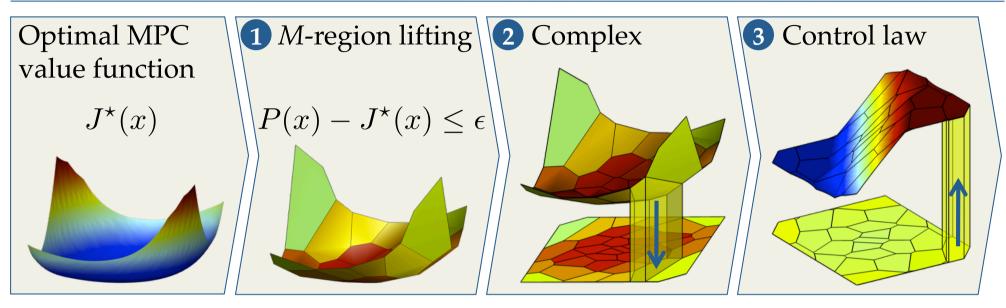
- Explicit MPC may not satisfy given real-time constraint
 - Complexity independent of available processing power
 - Number of regions (complexity) is exponentially sensitive to
 - State dimension
 - Input dimension
 - Small changes in system dynamics

Idea : Real-time explicit MPC with complexity as input

Algorithm properties:

- Tradeoff between complexity and optimality
 - Real-time synthesis
 - Control extremely high-speed systems
- Process any convex MPC problem
- Synthesis of control law to software is verifiable

Real-time explicit MPC : Offline processing



Given optimal controller:

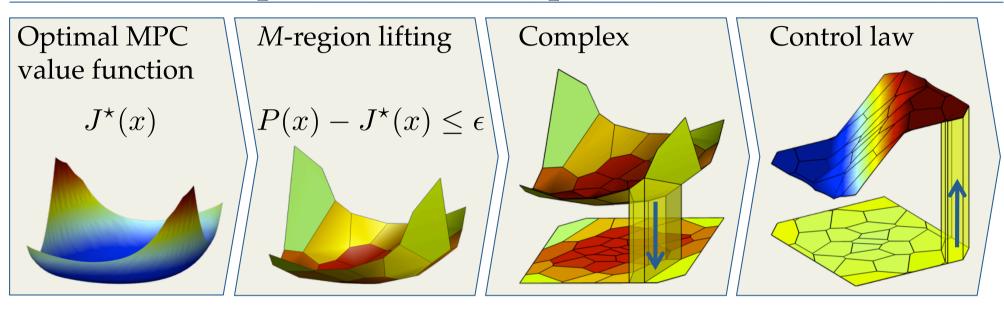
- 1 Compute convex polyhedral function of *M* facets
- 2 Define complex as projection of lifting facets
- 3 Interpolate optimal control law at vertices of complex

Result : Piecewise polynomial controller of *M* regions

$$J^{\star}(x_0) = \min_{u_i} V_N(x_N) + \sum_{i=0}^{N-1} l(x_i, u_i)$$

s.t. $x_{i+1} = f(x_i, u_i)$
 $(x_i, u_i) \in \mathcal{X} \times \mathcal{U}$
 $x_N \in \mathcal{X}_N$

Real-time explicit MPC : Properties



Real-time explicit MPC:

Is computable in micro- to nanoseconds<= Lifting function</th>Satisfies constraints<= Barycentric interpolation</td>

Stabilizes the system

Complexity/performance tradeoff

ε -approx controller is stable if ε < 1

$$J(u) := V_N(x_N) + \sum_{i=0}^{N-1} l(x_i, u_i)$$
$$J^*(x_0) := \min_{u_i} J(u)$$
s.t. $x_{i+1} = f(x_i, u_i)$
$$(x_i, u_i) \in \mathcal{X} \times \mathcal{U}$$
$$x_N \in \mathcal{X}_N$$

Sufficiently close to optimal \rightarrow Stabilizing

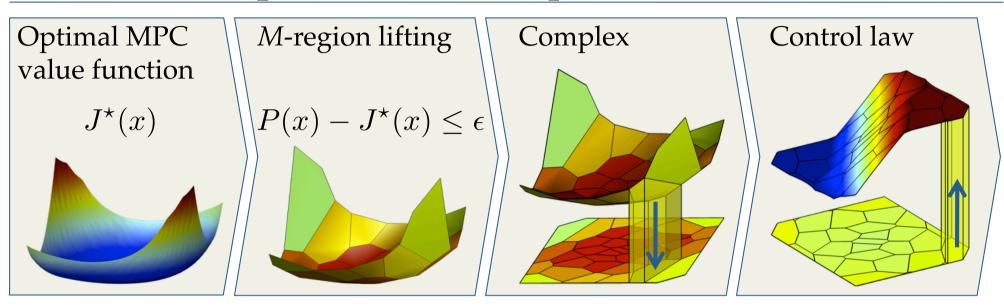
⇒ Stabilizing

Idea:

• Find a lifting sufficiently close to optimal and use it to define $\tilde{u}(x)$

Thm: $x^+ = f(x, \tilde{u}(x))$ is stable if $J^{\star}(x) \le J(\tilde{u}(x)) \le J^{\star}(x) + \epsilon l(x,0)$ for $\epsilon < 1$ $J(\tilde{u}(x))$ $J^{\star}(x) + \epsilon l(x,0)$ $J^{\star}(x)$

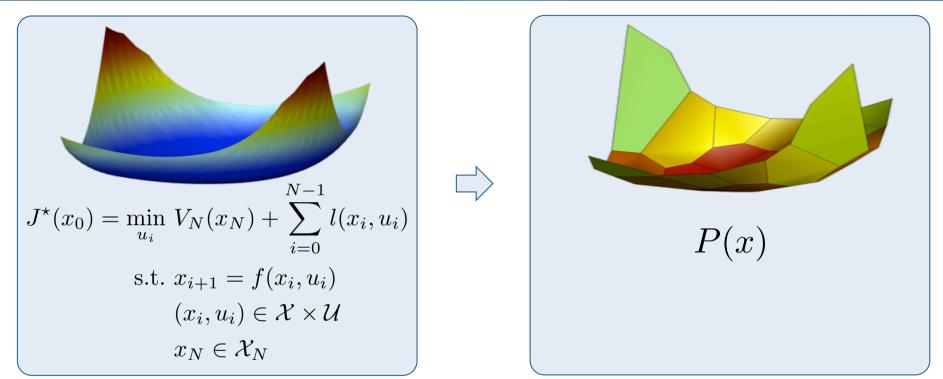
Real-time explicit MPC : Properties



Real-time explicit MPC:

Is computable in micro- to nanoseconds <= Lifting function Satisfies constraints <= Barycentric interpolation Stabilizes the system <= Error less than one Complexity/performance tradeoff

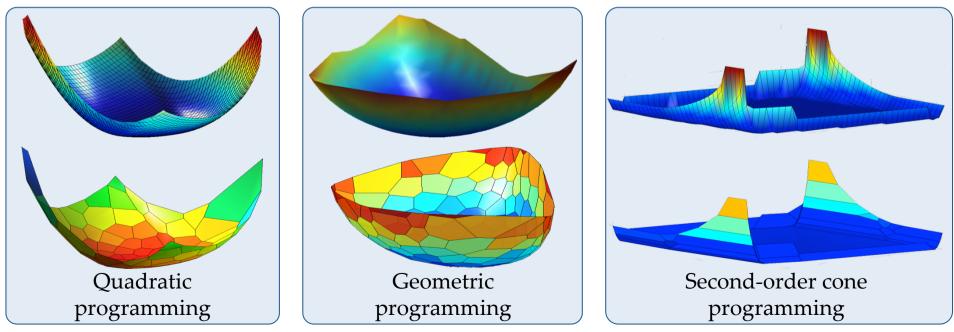
M-region approximation => Double description method



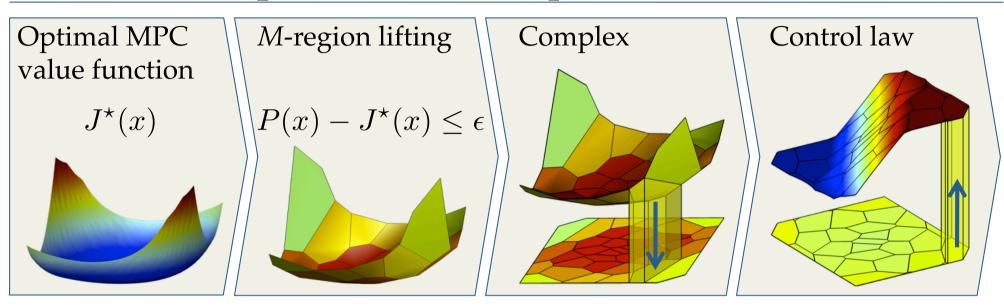
- Approximate convex parametric programming
- Open problem in many areas:
 - Vertex enumeration, Projection, Non-negative matrix factorization...
 - These problems are known to be NP-hard
- ⇒ Poly-time greedy-optimal algorithm

Double description method : Algorithm properties

- Lifting of *M* regions <= Iterate algorithm *M* times
- Monotonic decrease in Hausdorff distance
 - Complexity / performance tradeoff via M
- There exists a minimum *M* for stability
 - ϵ -error in finite time \Rightarrow will find a Lyapunov function
 - Once stable, always stable



Real-time explicit MPC : Properties



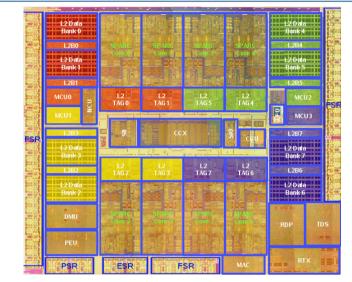
Real-time explicit MPC:

- Is computable in micro- to nanoseconds <= Liftin
- Satisfies constraints
- Stabilizes the system
- Complexity/performance tradeoff

- nds <= Lifting function
 - <= Barycentric interpolation
 - <= Error less than one
 - <= *M*-region lifting

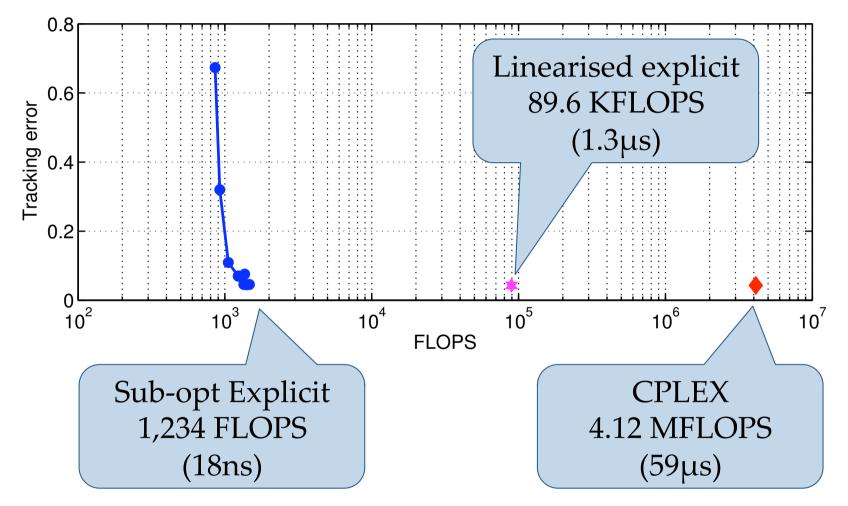
Example : Temperature Regulation of Multi-Core Processor

- Goals
 - Track workload requests
 - Minimize power usage
 - Respect temperature limits
- Quadratic nonlinear dynamics
 - Exact convex relaxation
- Stringent computational and storage requirements



$$\begin{aligned} J^{\star}(x_0, w) &= \min_{f_i} \sum_{t=0}^{N} \sum_{i=0}^{t} (w_i - f_i) \\ \text{s.t. } x_{i+1} &= Ax_i + Bf_i^2 \\ \sum_{i=0}^{t} w_i &\leq \sum_{i=0}^{t} f_i \\ x_i &\leq T_{\max} \\ f_{\min} &\leq f_i \leq f_{\max} \end{aligned}$$

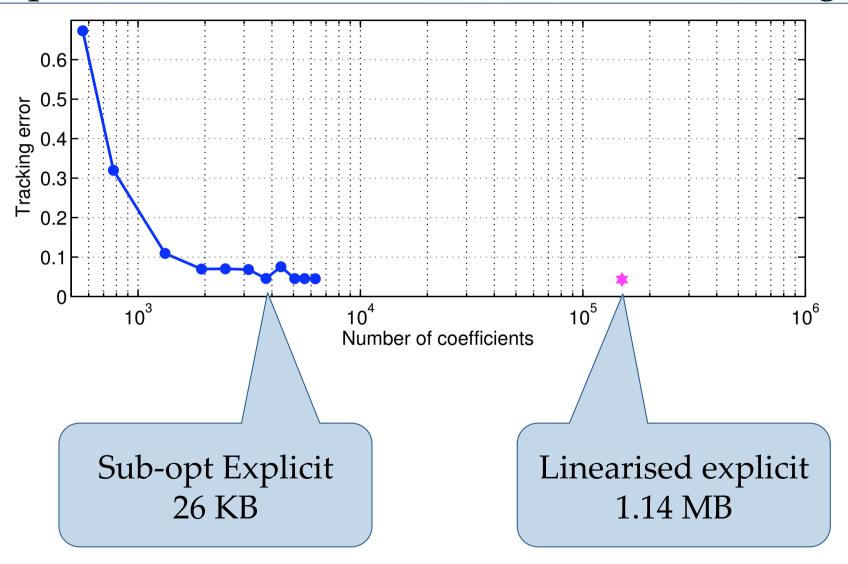
Computational results for QCQP : >3,000× faster



(Assuming 70 GFLOPS/sec – e.g., Intel Core i7 965 XE)

>3,000× / 72× faster than CPLEX / lin. explicit

Computational results for QCQP : 45× less storage



45× less storage

Outline

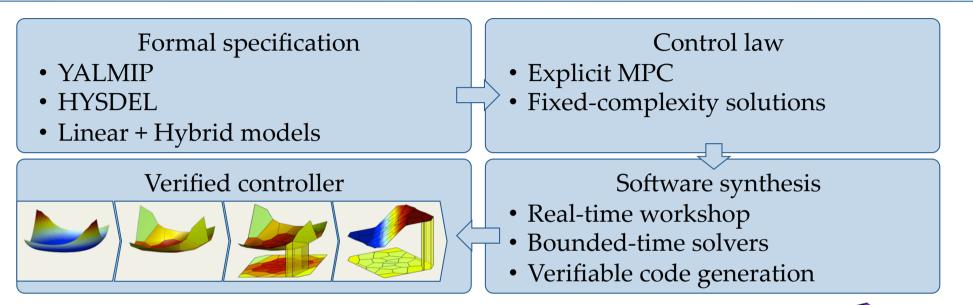
Motivating examples

A key challenge : Fast, fixed-time optimization

- Interior-point methods : Milli-seconds
- Fast gradient methods : Micro-seconds
- Explicit methods
- : Nano-seconds

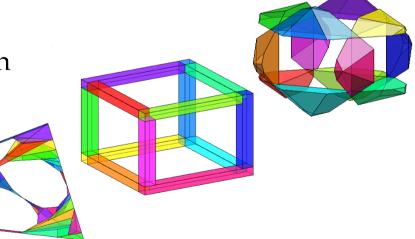
Summary

Summary



Multi-Parametric Toolbox (MPT)

- (Non)-Convex Polytopic Manipulation
- Multi-Parametric Programming
- Control of PWA and LTI systems
- > 22,000 downloads to date



MPT 3.0 coming in 2010