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Wave power: The heaving buoy

« ~1MW per meter of wave crest!
— Energy density ~800x wind

* Global potential ~10 TW? T—
— Exploitable > 2TW?3

Buoy /
— 20% world consumption*

* Floating buoy attached to generator

on seabed ope
— Heaving motion => Electrical energy
— System dynamics = ~Second order S Sfop?&
Mi = F, — ks — bi — F, oo Nl
Wave impact Mechanical Generator \ig
System - /Sp"ng,_»

Survey of Energy Resources, WEC, 2007
Panicker, Power resource estimate of ocean surface waves (2003)
Thorpe, Wave Power: Moving towards Commercial Viability (1999)

BP statistical review of world energy (2008) Picture courtesy of Uppsala University
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Wave farms are highly coupled

Combined cost function
— Maximize total energy

max Fioial := E / power,
— Jt
1

Coupled dynamics
— Buoy causes a circular wave
— Perturbs motion of adjacent buoys

C.Ei :f(xlaﬂ')xn)ula"')un)
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Smart camera networks : Surveillance and motion capture

Goal: cooperatively detect and track human targets
— Unsupervised identification of camera network topology

— Distributed estimation of a relative mapping between adjacent
cameras' field of views

— Optimal coverage of monitored site to search for anomalous events

— Moving object tracking with PTZ cameras and target hand-off

IfA Vision Lab

* Pan-tilt-zoom Ulisse Compact Cameras | r
i

* Support of Videotec S.p.A. | g Feetieback

UID€N
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Micro-scale Race Cars

e 1:43 scale cars — 106mm

« Top speed: 5m/s
(774 km / h scale speed)

 Full differential steering

« DPosition-sensing: External vision
* Sampling rate: 60Hz

Project goals:
1. Beat all human opponents!
2. Demonstrate real-time MPC maximizing car performance
3. Plan optimal path online in dynamic race environment

Challenges:
Highly nonlinear dynamics
Multiple unpredictable opponents
High-speed planning and control




4‘113:';!5' RC Racing Systems ‘:ﬁffg*

Optimal Race Planning

autonomic control of

dNano RC cars

[S. Colass, F. Engler, M. Osswald and C.N. Jones 2009]
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Price Control of Power Grids

* Current grid: %

— Many loads, generators, transmission lines (I |

— Strongly coupled but with own objectives Q. '1] LY e
« Market mechanisms break as renewables :
e.g., wind power share increases: Jgé T i % 5"

— Flow schedule violates line limits

— Failure to establish a clearing price

Goal: Minimize total generation cost, satisfy loads and line constraints

* Keep complex generation decisions localized:

— Cost function of operating point, penalties for output changes,
startup/shutdown events, capacity for ancillary services...

Idea: Distribute optimization and communicate via price signals

[J. Warrington and S. Mariethoz, 2009]
E-PRICE: Price-based Control of Electrical Power Systems



Distributed MPC Challenges

Coupled...

...dynamics




Common Problem

Execute control action with objectives

Stability

* Constraint satisfaction

* Performance guarantee

* Real time execution guarantee



Outline

Motivating examples

A key challenge : Fast, fixed-time optimization

* Interior-point methods : Milli-seconds
« Fast gradient methods : Micro-seconds

» Explicit methods : Nano-seconds

Summary



High-speed Model Predictive Control

1 — 1 1 \
J (x) = min Vn(z,u) £ ZzX Pry + Z TQx; + uTRuz-
u=[ug,...,u N —1] 2 i—0
s. t. Tj4q = Ax; + Bu; , linear nominal system
(xi,u;)) €XxU , polytopic constraints
TN e Xp , terminal set
Zo =T ,
_ J
Optimal MPC controller:

* Input and state constraints are satisfied
- Recursive feasibility

« J*(x) is a convex Lyapunov function
—> Stability of the closed-loop system

Goal: Feasibility/Stability/Tracking for suboptimal

MPC controller with real-time constraint
[M.N. Zeilinger, C.N. Jones, D. M. Raimondo, M. Morari, CDC 2009]




Optimal MPC scheme (Not Real-time!)

0:'7 £U+ 3 Trq &
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0 solution
T4
-> Properties?
Warm-start Online optimization
Optimal MPC:

* Recursively feasible
 Stabilizing

* Unknown computation time...



Real-time MPC scheme
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- Properties?

Online optimization

Warm-start ] nadt
+ Early termination

General approach for real-time MPC:
* Use of warm-start method
« Exploitation of structure inherent in MPC problems

 Early termination of the online optimization
[Ferreau et al., 2008], [Wang et al., 2008],...



Real-time MPC scheme - Current methods

feaSIZ)]e S,
et

Suboptimal
solution

Online optimization

Warm-start } nadt
+ Early termination

Suboptimal solution during online optimization steps
- can be infeasible

- can destabilize the system

- can cause steady-state offset



Online computation times for varying states

70

Example problem: ' o '|:| NAG Active Set Executed on a 2.53GHz Intel Xeon
60} []CPLEX Active Set [ running Linux;
o+ = 1.2 1} v+ [ 1 ] u [ |CPLEX Barier Computation time is measured as time
O 0.5 50l i spent on C routine, averaged over 1000
_ calls of the optimizer for each sampled
[#]loc <5, [lufloo <1, £ 4wl state.
N=5Q=I,R=1 = o
5 30}
8
20t
10¢f 4
NAG - Active Set method Dﬂ[-ﬂﬂﬂ{ :IF WHHH CPLEX - Barrier method
° i5 2 25 3 85 4 45
Computation time [s] 10
28
Z o6 CPLEX — Active Set method @
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c 24] x 10° %
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-~ Computation times for solving the optimal MPC problem vary
with the state of the system




Example: Effects of limited computation time

Solve MPC problem using CPLEX Active Set method
Example problem:

+_[121 1
v _{o 1}x+[0.5}“’

T Closed loop trajectory using

‘/ optimal MPC control law

15}
[#]loc <5, [lufloo < 1,

o N=5Q=I,R=1
X

3t
2.5

0 5 10 15 o0 o5 30
Time Step

Computation time [s]

05
-5

Now: Require computation time to be less than 27ms at every sampled state

- Restrict algorithm to 5 online optimization steps



Example: Effects of limited computation time

Solve MPC problem using CPLEX Active Set method

. Example problem:
[ Closed loop trajectory using L 121 1
‘/ optimal MPC control law = { 0 1} vt [0.5} “

15}
[#]loc <5, [lufloo < 1,

o N=5Q=I,R=1
X

A

0 5 10 15 o0 o5 30
Time Step

Computation time [s]

Closed loop trajectory using suboptimal MPC
control law, with a limit of 5 online optimization

iterations

- System does not converge to the origin

Limits on the online computation time can destroy the stability
properties of optimal MPC




Real-time MPC
with stability and robustness guarantees

e Guarantees on

— Real-time € Early termination

— Feasibility
— Stability
— Steady-state tracking
* Implementation for large-scale systems

* Fast implementation

[M.N. Zeilinger, C.N. Jones, D. M. Raimondo, M. Morari, CDC 2009]



Real-time MPC method
- Constraint satisfaction

Consider uncertain system: tT = Az + Bu+w
where w € W is a bounded disturbance .

* Robust MPC: Initial feasible solution for all disturbances
e.g. [Limon et al., 2009] and references therein

* Optimization maintains feasibility at all times

Here: Tube-based robust MPC: [Mayne et al., 2005]

N-1,
1 1

{{mr_l} Vy(z, Zo,0) = §xNPxN + Z FQz; + uTRuZ
ro.u 1=0
S.t. ji—l—l :zflfl—_FB’L_Lz , _ _

(Zi,u;) €XxU , X=XeZ,U=UsKZ2

TN EXf ,

x EToDZ ,

- Ellipsoidal invariant sets can be computed for all system sizes
- Resulting optimization problem is a convex QCOP



Real-time MPC
with stability and robustness guarantees

* Guarantees on
— Real-time € LEarly termination

— Feasibility € Robust MPC formulation

— Stability € Lyapunov constraint

— Steady-state tracking € Lyapunov constraint

* Implementation for large-scale systems € Convex QCQP

* Fast implementation

[M.N. Zeilinger, C.N. Jones, D. M. Raimondo, M. Morari, CDC 2009]



Real-time MPC - Fast Implementation

« Tracking formulation and Lyapunov constraint significantly
modity structure of matrices in Newton step computation
compared to literature. [Rao et al., 1998, Wang et al., 2008]

e Matrices can be transformed into arrow structure, which can be
solved efficiently with same complexity as standard MPC problems
[Rao et al.,1998; Hansson, 2000; Wang et al.,2008]

—> Fast solution of the tracking problem with guaranteed stability

for all suboptimal iterates = for all time constraints!

* Custom solver in C++ was developed extending fast MPC solver
described in literature [Wang et al., 2008]

- Computation times that are faster or equal compared to
methods with no guarantees

[M.N. Zeilinger, C.N. Jones, D. M. Raimondo, M. Morari, CDC 2009]



Example: Effects of limited computation time

Closed loop trajectory using real-time MPC control law
with Lyapunov constraint with a limit of 5 online

o optimization iterations Example problem:
Closed loop trajectory using L 121 1
ol \l optimal MPC control law = { 0 1} vt [0.5} v

AN lelloo < 5, llulloo < 1,
\ o N=5Q=I,R=1
X

fos

-1 0 0 5 10 15 o0 o5 30
Time Step

Computation time [s]

Closed loop trajectory using suboptimal MPC
control law, with a limit of 5 online optimization
iterations

Limits on the online computation time can destroy the stability
properties of optimal MPC




Numerical Examples

us l

Oscillating masses example I_E
u-]

* Problem: 12 states, 3 inputs

U9 |

e Fast MPC with guarantees: horizon N=10

- Computation of 5 Newton steps in 2 msec
Comparison: CPLEX 26 msec, SEDUMI 252 msec
Closed loop performance loss in % for varying iteration numbers

kmx | 1 | 2 | 3 1 4] 5] 6| 7|8 >Optimal
AJe | 139 1.32[1.10 | 0.88 | 0.70 [ 0.55 | 0.44 | 0.33 ~44 iterations

Random example

* Problem: 30 states, 8 inputs, horizon N=10
= QCQP with 410 optimization variables and 1002 constraints
- Computation of 5 Newton steps in 10 msec

[M.N. Zeilinger, C.N. Jones, D. M. Raimondo, M. Morari, CDC 2009]



Outline

Motivating examples

A key challenge : Fast, fixed-time optimization
* Interior-point methods : Milli-seconds

* Fast gradient methods : Micro-seconds

» Explicit methods : Nano-seconds

Summary



Structured Optimization: Input constrained MPC

* Linear system, input constraints only

 Gradient-based optimization
— Very simple
— Easy to parallelize
— Fast for large number of states

= Can pre-compute required number of online iterations

[Require: Uo € UV, Vo = Uy
1: for : =1 to imax dO
2: U; = myv (Vi—l — %VJN(V%—l; 513))
3: Vi=U; 4+ b;(U; — Us—1)
4. end for

~

- J

[Y. Nesterov, 1983]
[S. Richter, C.N. Jones and M. Morari, CDC 2009]

* Work per iteration
* 1 matrix-vector product
* 2 vector sums
* 1 projection (more later)



Fast Gradient Method for MPC

Observe:
Input-constrained MPC problem has a “simple” feasible set

UN =UxUx...xU

my (To) g
—> Projection can be separated: 7y~ <U) = "U (:ul) ,where U = u:l
7y (UN—1). UN -1

Missing Pieces

— e — [ ..
Require_ Uy € UV) Vp = @ Intuition:
L: for i =TTq imax §10 Choice of initial iterate
2 Ui = myy (VicT — %VJN(‘/; f

influences number of iterations
3: Vi=U; + b;(U; — U;_1) f f

4: end for

Two Initialization Strategies <> Two Different Lower Bounds on imax :
- Cold-Starting
- Warm-Starting



Main Complexity Results

Proposition (Cold-Starting) ,‘\_%v.w,,z,,.)
g 1

If in the fast gradient method

> the sequence U is the center of the feasible set UY and U.

- the initial iterate is given by Ug = 7y~ (Uc — %VJN(UC; w)), R

(In2e — InLR?)/ In (1 — \/iﬂiterations.J

- 2
Proposition (Warm-Starting) - Bound depends
-

) on set of initial states
Assume an €-solution U, = . was obt:
Ue (ue,Oa e,y ’UE’N_1> - Hard to compute

previous time-step. (Bilevel Problem)

If in the fast gradient method the initial iterate is defined by but can be recast as a
\Mixed Integer LP

an €-solution is obtained after imax >

-

UO=<ue,la°°°7ue,N—17uN)7 uny € U, Y,

(Ine—1n2§)/In (1 — \/gﬂ iterations,

where ¢ = max,cx, IN(Uw; z) — JN(2) . )
[S. Richter, C.N. Jones and M. Morari, CDC 2009]

an €-solution is obtained after imax >




[llustrative Example

4 states/2 inputs system:

0.7

4+ _ [0.2

- Set of initial states Xg = {z | ||z||coc < 10}
> Set of feasible inputs U = {u | ||u[lcc < 1}
- State disturbance w € W = {w | ||w]|co < 0.25}
- Weight matrices Q@ = In, R =0.11p
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Application to AC-DC Converter

Control of an AC-DC Converter

* Marginally stable system

in d-q coordinates: 6 states / 2 inputs /
2 disturbances / 2 controlled outputs

* Reference tracking MPC

1N—1

1
In(a) s=min _denlig, + 5 3 162kl + lIourlZ

k=0
s.t. dxp, =z — xss

oup = up — uss ,
$k+1 == A.’Ijk + Buk + wa 5
u’k € U(’U, ¢ + kngS) 9
o — <

* Implementation Platform:

600 MHz DSP, 16-bit fixed point arithmetic
[S. Richter, S. Mariéthoz and M. Morari, ACC 2010]

controlled inputs
outputs
w1

Tfg1 i
f9 AN ! S1v

+ Lfg sz

2000 2V
uﬁ}L Y2l Ufs3

S
2222 S3 U
Cf Cf Cf 1—81‘|§} 1—52"(]%& 1—83"%%5

UC+

Bound: 125 ps
Measured: <50 ps
Memory: <1KB

Relative accuracy: <1le-3




Outline

Motivating examples

A key challenge : Fast, fixed-time optimization
* Interior-point methods : Milli-seconds
« Fast gradient methods : Micro-seconds

* Explicit methods : Nano-seconds

Summary



Explicit MPC : Online => Offline Processing

* Optimization problem is function parameterized by state

 Control law piecewise affine for PWA systems/constraints

* Pre-compute control law as function of state x

Result : Online computation
dramatically reduced

-

N-1
u*(x) = argmin Vy(zn) + Z (x5, u;)

i i=0
S.t. Li+1l = f(ZEZ,’LLZ)
(CIZZ',U,Z') ceX xU

ZENEXN

o=

-

~N

[M.M. Seron, |].A. De Dond and G.C. Goodwin, 2000]
[T.A. Johansen, 1. Peterson and O. Slupphaug, 2000]

[A. Bemporad, M. Morari, V. Dua and E.N. Pistokopoulos, 2000]

-

(&

u” ()




Online speed depends on number of control law regions

* Online evaluation reduced to:
G Point location
e Evaluation of affine function
* Online complexity is governed by point location

— Function of number of regions in cell complex
— Milli- to microseconds possible only if small number of regions!!

o \




Real-time <> synthesize control law of specified complexity

« Explicit MPC may not satisty given real-time constraint
— Complexity independent of available processing power

— Number of regions (complexity) is exponentially sensitive to
» State dimension
* Input dimension
 Small changes in system dynamics

Idea : Real-time explicit MPC with complexity as input

Algorithm properties:
* Tradeoff between complexity and optimality

— Real-time synthesis
—  Control extremely high-speed systems

* Process any convex MPC problem

« Synthesis of control law to software is verifiable
[C.N. Jones and M. Morari, TAC 2010]



Real-time explicit MPC : Offline processing

Optimal MPC | @ M-region lifting | |@ Complex © Control law
value function

J*(x) P(:U) — J*(z) <€

Given optimal controller:
€@ Compute convex polyhedral |/ (2o) = min Vy(zy) + Z [, ug)

function of M facets =0
@) Define complex as projection s.b. Zip1 = f(@i, wi)
of lifting facets (z5,u;) € X xU

© Interpolate optimal control
law at vertices of complex -

Result : Piecewise polynomial controller of M regions
[C.N. Jones and M. Morari, TAC 2010]

ZUNEXN )




Real-time explicit MPC : Properties

Optimal MPC M-region lifting Complex Control law
value function

J*(x) P(x) — J*(z) < e

A

Real-time explicit MPC:

Is computable in micro- to nanoseconds <= Lifting function
Satisfies constraints <= Barycentric interpolation

Stabilizes the system

Complexity / performance tradeoff

[C.N. Jones and M. Morari, TAC 2010]



€ -approx controller is stable if € <1

( N—1

J(u) :=Vy(zn) + > 1w, u;)

i=0
J* (7o) = min J(u)

S.t. Li+1l = f(a:z,uz)
(in,ui) ceX xU

QZNEXN

-

\ 4

Thm: =+ = f(z,a(x))
is stable if
J*(x) < J(u(x)) < J*(x) + €l(x,0)

fore < 1

Suftficiently close to optimal
= Stabilizing

Idea:

* Find a lifting sufficiently

close to optimal and use it
to define u(x)

J*(x) + €l(z,0) J(u(z))




Real-time explicit MPC : Properties

Optimal MPC M-region lifting Complex Control law
value function

J*(x) P(x) — J*(z) < e

Real-time explicit MPC:
Is computable in micro- to nanoseconds <= Lifting function
Satisfies constraints <= Barycentric interpolation
Stabilizes the system <= Error less than one

Complexity/performance tradeoff

[C.N. Jones and M. Morari, TAC 2010]



M-region approximation => Double description method

(" ) ( )

N1 =)
J*(xg) = min Vn(zn) + Z Uz, u;)
' i=0

S.t. Li+1 = f(:cz,uz)
(xi,u;) € X xU

TN € XN
o J - J

* Approximate convex parametric programming

* Open problem in many areas:
— Vertex enumeration, Projection, Non-negative matrix factorization...
— These problems are known to be NP-hard

= Poly-time greedy-optimal algorithm



Double description method : Algorithm properties

« Lifting of M regions <= Iterate algorithm M times

e Monotonic decrease in Hausdorff distance
— Complexity / performance tradeoff via M

 There exists a minimum M for stability

— ¢-error in finite time = will find a Lyapunov function

— Once stable, always stable

Quadpratic Geometric Second-order cone
programming programming programming

AN J

[C.N. Jones and M. Morari, TAC 2010]




Real-time explicit MPC : Properties

Optimal MPC M-region lifting Complex Control law
value function

J*(x) P(:c) — J*(z) <€

Real-time explicit MPC:

Is computable in micro- to nanoseconds <= Lifting function

Satisfies constraints <= Barycentric interpolation
Stabilizes the system <= Error less than one
Complexity / performance tradeoff <= M-region lifting

[C.N. Jones and M. Morari, TAC 2010]



Example :

Temperature Regulation of Multi-Core Processor

 Goals

— Track workload requests
— Minimize power usage
— Respect temperature limits
* Quadratic nonlinear dynamics

— Exact convex relaxation

* Stringent computational and
storage requirements S (0, w) =

L STmaX
fmin < fz < fmax )

[F. Zanini, C.N. Jones, D. Atienza, and G. De Micheli, 2010] ~




Computational results for QCQP : >3,000x faster

0.8

" Linearised explicit )
89.6 KFLOPS

(1.5p5)

o
o)

Tracking error

FLOPS

Sub-opt Explicit CPLEX
1,234 FLOPS 4.12 MFLOPS

(18ns) (59us)
(Assuming 70 GFLOPS/sec — e.g., Intel Core i7 965 XE)

>3,000x / 72x faster than CPLEX / lin. explicit



Computational results for QCQP : 45x less storage

R : R : R : R
0-6_.§§§§ ........... g ...... §§§§§§§§ ............ g ....... g ..... §§§§§§§ ............ g ....... g gggggg_
5 0_5_.;.;.;.;.; ...................................................................................................................... _
= i : ISR : ISR R : S S
o IR W S R U S T S S S SN SO SR SRS
00'4::::: : R : A : R
£ RS W : ISR : ISR A : S S
{) 0-3_.,.,..,,,,.hh..,.,,.,_
= DTN : ISR : SRS R : ST S

10° 10° 6
ts

H :I(I:)4 H H H H
Number of coefficien

Sub-opt Explicit Linearised explicit
26 KB 1.14 MB

45x% less storage




Outline

Motivating examples

A key challenge : Fast, fixed-time optimization
* Interior-point methods : Milli-seconds

» Fast gradient methods : Micro-seconds
 Explicit methods : Nano-seconds




Summary

Formal specification Control law
* YALMIP |+ Explicit MPC
« HYSDEL -~/ * Fixed-complexity solutions
_ * Linear + Hybrid models ] - )
Verified controller Software synthesis
> > > , » Real-time workshop
U Ll % 4 '« Bounded-time solvers
. - )| * Verifiable code generation )

Multi-Parametric Toolbox (MPT)
* (Non)-Convex Polytopic Manipulation

* Multi-Parametric Programming
* Control of PWA and LTI systems
o >22 000 downloads to date

MPT 3.0 coming in 2



