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Wave power: The heaving buoy!
•  ~1MW per meter of wave crest1!

–  Energy density ~800x wind!
•  Global potential ~10 TW2!

–  Exploitable > 2TW3 !
–  20% world consumption4!

•  Floating buoy attached to generator 
on seabed!
–  Heaving motion !! Electrical energy!
–  System dynamics!! ~Second order!

Picture courtesy of Uppsala University 

Generator Mechanical 
System 

Wave impact 

Mẍ = Fw − ks− bẋ− Fu

1.  Survey of Energy Resources, WEC, 2007 
2.  Panicker, Power resource estimate of ocean surface waves (2003) 
3.  Thorpe, Wave Power: Moving towards Commercial Viability (1999) 
4.  BP statistical review of world energy (2008) 



Wave farms are highly coupled!
Combined cost function!

–  Maximize total energy!

Coupled dynamics!
–  Buoy causes a circular wave!
–  Perturbs motion of adjacent buoys!

ẋi = f(x1, . . . , xn, u1, . . . , un)

maxEtotal :=
�

i

�

t
poweri
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Smart camera networks : Surveillance and motion capture!
Goal: cooperatively detect and track human targets!

–  Unsupervised identification of camera network topology!
–  Distributed estimation of a relative mapping between adjacent 

cameras' field of views!
–  Optimal coverage of monitored site to search for anomalous events!
–  Moving object tracking with PTZ cameras and target hand-off!

• Pan-tilt-zoom Ulisse Compact Cameras 
•  Support of Videotec S.p.A. 

IfA Vision Lab 
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Challenges: 
Highly nonlinear dynamics 
Multiple unpredictable opponents 
High-speed planning and control 

Project goals:  
1.  Beat all human opponents! 
2.  Demonstrate real-time MPC maximizing car performance 
3.  Plan optimal path online in dynamic race environment 

Micro-scale Race Cars!
•  1:43 scale cars – 106mm!
•  Top speed: 5 m/s "

!(774 km/h scale speed)!
•  Full differential steering!
•  Position-sensing: External vision!
•  Sampling rate: 60Hz!



Optimal Race Planning!

[S. Colass, F. Engler, M. Osswald and C.N. Jones 2009]!
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Price Control of Power Grids!
•  Current grid:!

–  Many loads, generators, transmission lines!
–  Strongly coupled but with own objectives!

•  Market mechanisms break as renewables"
e.g., wind power share increases:!
–  Flow schedule violates line limits!
–  Failure to establish a clearing price!

Goal: Minimize total generation cost, satisfy loads and line constraints  
•  Keep complex generation decisions localized:  

–  Cost function of operating point, penalties for output changes, 
startup/shutdown events, capacity for ancillary services… 

Idea: Distribute optimization and communicate via price signals!
[J. Warrington and S. Mariethoz, 2009]!

E-PRICE: Price-based Control of Electrical Power Systems !



Distributed MPC Challenges!

…constraints 

…dynamics 

…objectives 

…inputs 

Coupled… 



Common Problem!

Execute control action with objectives!

•  Stability !
•  Constraint satisfaction!
•  Performance guarantee!
•  Real time execution guarantee!



Outline!
Motivating examples!

A key challenge : Fast, fixed-time optimization!
•  Interior-point methods !: Milli-seconds!
•  Fast gradient methods !: Micro-seconds!
•  Explicit methods ! !: Nano-seconds!

Summary!



High-speed Model Predictive Control!

Optimal MPC controller: 
•  Input and state constraints are satisfied 
     ! Recursive feasibility 
•             is a convex Lyapunov function 
     ! Stability of the closed-loop system  

Goal:  Feasibility/Stability/Tracking for suboptimal  
 MPC controller with real-time constraint 

[M.N. Zeilinger, C.N. Jones, D. M. Raimondo, M. Morari, CDC 2009] 



Optimal MPC scheme (Not Real-time!)!

Warm-start Online optimization 

Optimal MPC: 
•  Recursively feasible 
•  Stabilizing 
•  Unknown computation time… 

Optimal  
solution 

! Properties? 



Real-time MPC scheme!

Warm-start Online optimization 
+ Early termination 

Suboptimal  
solution 

General approach for real-time MPC: 
•  Use of warm-start method  
•  Exploitation of structure inherent in MPC problems  
•  Early termination of the online optimization  

 [Ferreau et al., 2008], [Wang et al., 2008],… 

! Properties? 



Real-time MPC scheme - Current methods !

 Suboptimal solution during online optimization steps 
-  can be infeasible  
-  can destabilize the system  
-  can cause steady-state o!set 

Warm-start Online optimization 
+ Early termination 

Suboptimal  
solution 



! Computation times for solving the optimal MPC problem vary 
with the state of the system 

Online computation times for varying states!

NAG – Active Set method CPLEX – Barrier method 

CPLEX – Active Set method 

Executed on a 2.53GHz Intel Xeon 
running Linux; 
Computation time is measured as time 
spent on C routine,  averaged over 1000 
calls of the optimizer for each sampled 
state. 

Example problem: 



Solve MPC problem using CPLEX Active Set method!

Now: Require computation time to be less than 27ms at every sampled state!
! Restrict algorithm to 5 online optimization steps !

Example: Effects of limited computation time!

Closed loop trajectory using 
optimal MPC control law  

Example problem: 



Solve MPC problem using CPLEX Active Set method!

!  System does not converge to the origin!

Example: Effects of limited computation time!

Closed loop trajectory using suboptimal MPC 
control law, with a limit of 5 online optimization 
iterations 

Limits on the online computation time can destroy the stability 
properties of optimal MPC  

Example problem: 
Closed loop trajectory using 
optimal MPC control law  



Real-time MPC "
with stability and robustness guarantees!

•  Guarantees on 

–  Real-time   " Early termination 

–  Feasibility    

–  Stability    

–  Steady-state tracking  

•  Implementation for large-scale systems 

•  Fast implementation!

[M.N. Zeilinger, C.N. Jones, D. M. Raimondo, M. Morari, CDC 2009] 



Real-time MPC method"
- Constraint satisfaction!
Consider uncertain system: !
where !            is a bounded disturbance . !
•  Robust MPC: Initial feasible solution for all disturbances              

e.g. [Limon et al., 2009] and references therein!

•  Optimization maintains feasibility at all times!

Here: Tube-based robust MPC: [Mayne et al., 2005]!

! Ellipsoidal invariant sets can be computed for all system sizes!
! Resulting optimization problem is a convex QCQP!



Real-time MPC "
with stability and robustness guarantees!

•  Guarantees on 

–  Real-time  " Early termination 

–  Feasibility  " Robust MPC formulation 

–  Stability  " Lyapunov constraint 

–  Steady-state tracking  " Lyapunov constraint 

•  Implementation for large-scale systems " Convex QCQP 

•  Fast implementation!

[M.N. Zeilinger, C.N. Jones, D. M. Raimondo, M. Morari, CDC 2009] 



Real-time MPC - Fast Implementation!
•  Tracking formulation and Lyapunov constraint significantly 

modify structure of matrices in Newton step computation 
compared to literature. ! ! ![Rao et al., 1998, Wang et al., 2008]!

•  Matrices can be transformed into arrow structure, which can be 
solved efficiently with same complexity as standard MPC problems

! !             !          [Rao et al.,1998; Hansson, 2000; Wang et al.,2008]!

!! Fast solution of the tracking problem with guaranteed stability!
!      for all suboptimal iterates ! for all time constraints!!

•  Custom solver in C++ was developed extending fast MPC solver 
described in literature [Wang et al., 2008]!

!! Computation times that are faster or equal compared to !
          methods with no guarantees!

[M.N. Zeilinger, C.N. Jones, D. M. Raimondo, M. Morari, CDC 2009] 



Example: Effects of limited computation time!

Closed loop trajectory using suboptimal MPC 
control law, with a limit of 5 online optimization 
iterations 

Limits on the online computation time can destroy the stability 
properties of optimal MPC  

Example problem: 
Closed loop trajectory using 
optimal MPC control law  

Closed loop trajectory using real-time MPC control law 
with Lyapunov constraint with a limit of 5 online 
optimization iterations 



Oscillating masses example 

•  Problem: 12 states, 3 inputs 
•  Fast MPC with guarantees: horizon N=10 

 ! Computation of 5 Newton steps in 2 msec 

      Comparison: CPLEX 26 msec, SEDUMI 252 msec 

 Closed loop performance loss in % for varying iteration numbers 

Random example 
•  Problem: 30 states, 8 inputs, horizon N=10 

 ! QCQP with 410 optimization variables and 1002 constraints 
 ! Computation of 5 Newton steps in 10 msec 

Numerical Examples!

! Optimal  
    ~44 iterations 

[M.N. Zeilinger, C.N. Jones, D. M. Raimondo, M. Morari, CDC 2009] 
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A key challenge : Fast, fixed-time optimization!
•  Interior-point methods !: Milli-seconds!
•  Fast gradient methods !: Micro-seconds!
•  Explicit methods ! !: Nano-seconds!

Summary!



Structured Optimization: Input constrained MPC!
•  Linear system, input constraints only!
•  Gradient-based optimization!

–  Very simple!
–  Easy to parallelize!
–  Fast for large number of states!

! Can pre-compute required number of online iterations!

[Y. Nesterov, 1983] 
[S. Richter, C.N. Jones and M. Morari, CDC 2009] 

•  Work per iteration 
•  1 matrix-vector product  
•  2 vector sums 
•  1 projection (more later) 



Observe: 
Input-constrained MPC problem has a “simple” feasible set 

! Projection can be separated:                                          where 

Missing Pieces 

Two Initialization Strategies # Two Di!erent Lower Bounds on          : 

!  Cold-Starting 

!  Warm-Starting 

Fast Gradient Method for MPC!

Intuition: 
Choice of initial iterate 
influences number of iterations 



Proposition (Cold-Starting) 

If in the fast gradient method 

 ! the sequence      is the center of the feasible set      , and 

 ! the initial iterate is given by                                                      , 

an   -solution is obtained a"er                                                              iterations.    

Main Complexity Results!

Proposition (Warm-Starting) 
Assume an   -solution                                                    was obtained at the 
previous time-step. 
If in the fast gradient method the initial iterate is defined by 

                             , 

an   -solution is obtained a"er                                                           iterations, 

where                                                            .   

! Bound depends 
on set of initial states 
!  Hard to compute 
(Bilevel Problem) 
but can be recast as a 
Mixed Integer LP 

[S. Richter, C.N. Jones and M. Morari, CDC 2009] 



4 states/2 inputs system: 

!  Set of initial states 
!  Set of feasible inputs 
!  State disturbance 
!  Weight matrices  

Illustrative Example!



Control of an AC-DC Converter 
•  Marginally stable system 

in d-q coordinates: 6 states / 2 inputs /  
2 disturbances / 2 controlled outputs 

•  Reference tracking MPC 

•  Rotating/Scaling Feasible Set: 

•  Implementation Platform: 
 600 MHz DSP, 16-bit fixed point arithmetic 

Application to AC-DC Converter!
inputs controlled  

outputs 

Bound:  125 µs 
Measured:  < 50 µs 
Memory:  < 1KB 
Relative accuracy:  < 1e-3 

[S. Richter, S. Mariéthoz and M. Morari, ACC 2010] 
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Explicit MPC : Online => Offline Processing!
•  Optimization problem is function parameterized by state!
•  Control law piecewise affine for PWA systems/constraints!
•  Pre-compute control law as function of state !
Result : Online computation "

!dramatically reduced!

u�(x) = argmin
ui

VN (xN ) +
N−1�

i=0

l(xi, ui)

s.t. xi+1 = f(xi, ui)
(xi, ui) ∈ X × U
xN ∈ XN

x0 = x

u�(x)

x1 x2

x

[M.M. Seron, J.A. De Doná and G.C. Goodwin, 2000] 
[T.A. Johansen, I. Peterson and O. Slupphaug, 2000] 
[A. Bemporad, M. Morari, V. Dua and E.N. Pistokopoulos, 2000] 



Online speed depends on number of control law regions!
•  Online evaluation reduced to:!

1.  Point location!
2.  Evaluation of affine function!

•  Online complexity is governed by point location!
–  Function of number of regions in cell complex!
–  Milli- to microseconds possible only if small number of regions!!!

x

u�(x) = xT

�
−0.47
−1.37

�
+ 0.98

1 2 

1 

2 



Real-time # synthesize control law of specified complexity!
•  Explicit MPC may not satisfy given real-time constraint!

–  Complexity independent of available processing power!
–  Number of regions (complexity) is exponentially sensitive to!

•  State dimension!
•  Input dimension!
•  Small changes in system dynamics!

Idea : Real-time explicit MPC with complexity as input!
Algorithm properties:!
•  Tradeoff between complexity and optimality!

–  Real-time synthesis!
–  Control extremely high-speed systems!

•  Process any convex MPC problem!
•  Synthesis of control law to software is verifiable!

[C.N. Jones and M. Morari, TAC 2010] 



Real-time explicit MPC : Offline processing!

Given optimal controller:!
1.  Compute convex polyhedral "

function of M facets!
2.  Define complex as projection"

of lifting facets!
3.  Interpolate optimal control "

law at vertices of complex!
Result : Piecewise polynomial controller of M regions!

J�(x0) = min
ui

VN (xN ) +
N−1�

i=0

l(xi, ui)

s.t. xi+1 = f(xi, ui)
(xi, ui) ∈ X × U
xN ∈ XN

Complex!M-region lifting! Control law!Optimal MPC 
value function!

P (x)− J�(x) ≤ �J�(x)

[C.N. Jones and M. Morari, TAC 2010] 

1 2 3 

1 

2 

3 



Real-time explicit MPC : Properties!

Real-time explicit MPC:!
Is computable in micro- to nanoseconds !<=!Lifting function!
Satisfies constraints !<=!Barycentric interpolation!
Stabilizes the system!
Complexity/performance tradeoff!

Complex!M-region lifting! Control law!Optimal MPC 
value function!

P (x)− J�(x) ≤ �J�(x)

[C.N. Jones and M. Morari, TAC 2010] 



ε-approx controller is stable if ε < 1!

Sufficiently close to optimal!
⇒  Stabilizing!

Idea:!
•  Find a lifting sufficiently 

close to optimal and use it 
to define!

J(u) := VN (xN ) +
N−1�

i=0

l(xi, ui)

J�(x0) := min
ui

J(u)

s.t. xi+1 = f(xi, ui)
(xi, ui) ∈ X × U
xN ∈ XN

Thm:  
is stable if 

for       

x+ = f(x, ũ(x))

J�(x) ≤ J(ũ(x)) ≤ J�(x) + �l(x, 0)

J(ũ(x))J�(x) + �l(x, 0)

J�(x)

� < 1

ũ(x)



Real-time explicit MPC : Properties!

Real-time explicit MPC:!
Is computable in micro- to nanoseconds !<=!Lifting function!
Satisfies constraints !<=!Barycentric interpolation!
Stabilizes the system !<= Error less than one!
Complexity/performance tradeoff!

Complex!M-region lifting! Control law!Optimal MPC 
value function!

P (x)− J�(x) ≤ �J�(x)

[C.N. Jones and M. Morari, TAC 2010] 



P (x)

M-region approximation => Double description method!

•  Approximate convex parametric programming!
•  Open problem in many areas:!

–  Vertex enumeration, Projection, Non-negative matrix factorization…!
–  These problems are known to be NP-hard!

!  Poly-time greedy-optimal algorithm!

J�(x0) = min
ui

VN (xN ) +
N−1�

i=0

l(xi, ui)

s.t. xi+1 = f(xi, ui)
(xi, ui) ∈ X × U
xN ∈ XN



Double description method : Algorithm properties!

Quadratic  
programming 

Geometric 
programming 

Second-order cone 
programming 

•  Lifting of M regions <= Iterate algorithm M times!
•  Monotonic decrease in Hausdorff distance!

–  Complexity / performance tradeoff  via M!
•  There exists a minimum M for stability 

–  "-error in finite time ! will find a Lyapunov function!
–  Once stable, always stable!

[C.N. Jones and M. Morari, TAC 2010] 



Real-time explicit MPC : Properties!

Real-time explicit MPC:!
Is computable in micro- to nanoseconds !<=!Lifting function!
Satisfies constraints !<=!Barycentric interpolation!
Stabilizes the system !<= Error less than one!
Complexity/performance tradeoff !<= M-region lifting!

Complex!M-region lifting! Control law!Optimal MPC 
value function!

P (x)− J�(x) ≤ �J�(x)

[C.N. Jones and M. Morari, TAC 2010] 



Example : "
Temperature Regulation of Multi-Core Processor!
•  Goals!

–  Track workload requests!
–  Minimize power usage!
–  Respect temperature limits!

•  Quadratic nonlinear dynamics!
–  Exact convex relaxation!

•  Stringent computational and "
storage requirements!

!
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J�(x0, w) = min
fi

N�

t=0

t�

i=0

(wi − fi)

s.t. xi+1 = Axi + Bf2
i

t�

i=0

wi ≤
t�

i=0

fi

xi ≤ Tmax

fmin ≤ fi ≤ fmax
[F. Zanini, C.N. Jones, D. Atienza, and G. De Micheli, 2010]!
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Computational results for QCQP : >3,000× faster!

Sub-opt Explicit 
1,234 FLOPS 

(18ns) 

CPLEX 
4.12 MFLOPS 

(59µs) 

Linearised explicit 
89.6 KFLOPS 

(1.3µs) 

(Assuming 70 GFLOPS/sec – e.g., Intel Core i7 965 XE)!

>3,000! / 72! faster than CPLEX / lin. explicit 
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Computational results for QCQP : 45× less storage!

Sub-opt Explicit 
26 KB 

Linearised explicit 
1.14 MB 

45! less storage 
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A key challenge : Fast, fixed-time optimization!
•  Interior-point methods !: Milli-seconds!
•  Fast gradient methods !: Micro-seconds!
•  Explicit methods ! !: Nano-seconds!

Summary!



Summary!

So"ware synthesis 
•  Real-time workshop 
•  Bounded-time solvers 
•  Verifiable code generation 

Formal specification 
•  YALMIP 
•  HYSDEL 
•  Linear + Hybrid models 

Verified controller 

Control law 
•  Explicit MPC 
•  Fixed-complexity solutions 

Multi-Parametric Toolbox (MPT)  
•  (Non)-Convex Polytopic Manipulation  
•  Multi-Parametric Programming 
•  Control of PWA and LTI systems 
•  > 22,000 downloads to date 

MPT 3.0 coming in 2010 


