
Embedded Systems
Design – Challenges and
Work Directions

Joseph SifakisJoseph Sifakis
VERIMVERIMAAG G LaboratoryLaboratory

NECSYS 2010NECSYS 2010
AnnecyAnnecy

September 14, 2010September 14, 2010

The Evolution of Informatics

Foundations -
Alan Turing,
Kurt Gödel

Scientific Computing
– Defence Applications WEB –

Information Society

Embedded Systems:
Computing + Physicality
� Seamless revolution
� 95% of chips are embedded

� Convergence between Computing
and Telecommunications

� Graphic Interfaces, Mouse

� Information Systems:
Commercial Applications
� Integrated circuits

Informatics is a young discipline, driven by exponential growth of components and their applications.

The Internet of Things:
Convergence between

Embedded Systems and
the Internet

Multi-core
Systems

1936

1945

1970

1980 1990

2000 2015

2010

3

EmbededEmbeded SystemsSystems
Electronic components integrate software and hardware

jointly and specifically designed to provide given functionalities, which are often critical.

O
V
E
R
V
I
E
W

4

� System Design Today

� Basic Technologies

� Applications

� Research Challenges

� Marry Physicality and Computation

� Encompass Heterogeneity – Unified Composition Paradigm

� Cope with Complexity - Constructivity

� Cope with Uncertainty – Adaptivity

� Work Directions

� Discussion

System Design – New Trends

5

New trends break with traditional Computing Systems Engineering.
It is hard to jointly meet technical requirements such as:

� Reactivity: responding within known and guaranteed delay
Ex : flight controller

� Autonomy: provide continuous service without human intervention
Ex : no manual start, optimal power management

� Dependability: guaranteed minimal service in any case
Ex : attacks, hardware failures, software execution errors

� Scalability: at runtime or evolutionary growth (linear performance increase
with resources)
Ex : reconfiguration, scalable services

Technological challenge :
Capacity to build systems of guaranteed functionality and quality,
at an acceptable cost.

...and also take into account economic requirements for optimal cost/quality

System Design – State of the Art

� Safety and/or security critical systems of low complexity
� Flight controller, smart card

� Complex « best effort » systems
� Telecommunication systems, web-based applications

We need:

� Affordable critical systems
Ex : transport, health, energy management

� Successful integration of heterogeneous systems of systems
� Convergence internet/embedded systems (internet of things)

� Automated Highways

� New generation air traffic control

� « Ambient Intelligence»

TO
M

O
R

R
O

W
TO

D
A

Y
We master – at a high cost – two types of systems which are
difficult to integrate:

System Design – Still a long way to go

Suggested by T. Henzinger: T. Henzinger, J. Sifakis “The Embedded Systems Design Challenge” FM06

Theory for building artifacts with
predictable behavior

Lack of results allowing
constructivity

Physics Informatics

System Design – Still a long way to go

Design of large IT systems is a risky undertaking, mobilizing hundreds of engineers
over several years.

Difficulties
� Complexity – mainly for building systems by reusing existing

components
� Requirements are often incomplete, and ambiguous

(specified in natural language)
� Design approaches are empirical and based

on the expertise and experience of teams

Consequences
� Large IT projects are often over budget,

over time, and deliver poor quality.
� Of these, 40% fail, 30% partially succeed, 30% succeed.

System Design – a Long Way to go

"It has long been my personal view that the separation of practical and theoretical
work is artificial and injurious.

Much of the practical work done in computing, both in software and in hardware
design, is unsound and clumsy because the people who do it have not any clear
understanding of the fundamental design principles of their work.

Most of the abstract mathematical and theoretical work is sterile because it has no
point of contact with real computing.

Christopher Strachey (1916-1975)

There is an increasing gap between:
� Our technological capabilities
for treating and transmitting
information
� Our know-how in computing
systems engineering

O
V
E
R
V
I
E
W

10

� System Design Today

� Basic Technologies

� Applications

� Research Challenges

� Marry Physicality and Computation

� Encompass Heterogeneity – Unified Composition Paradigm

� Cope with Complexity - Constructivity

� Cope with Uncertainty – Adaptivity

� Work Directions

� Discussion

Basic Technologies Basic Technologies – MulticoreMulticore SystemsSystems

11

�The switch to multicore architectures
� is not at all the consequence of a scientific breakthrough,
� is primarily due to technology walls that prevent from pushing forward

the efficient implementation of traditional uniprocessor designs in silicon

� Increasing application's efficiency, simply by upgrading the hardware
without significantly changing the software, is not anymore possible for
multicore systems.

�The promise of parallel machines delivering almost unlimited computing
power is not new. For decades there have been numerous industrial
attempts in this direction, but almost all failed. Why?

Basic Technologies Basic Technologies – MulticoreMulticore SystemsSystems

12

� “Software is struggling to keep pace with the fast growth of multicore
processors”

� “Running advanced multicore machines with today's software is like "putting
a Ferrari engine in a go-cart,“

� "Many of the software configurations in use today will be challenged to
support the hardware configurations possible, and those will be accelerating
in the future."

Gartner, Research Note, January 2009

Basic Technologies Basic Technologies – Sensor Networks

1. An unmanned plane (UAV) deploys motes1. An unmanned plane (UAV) deploys motes

2.2. Motes establish an sensor network Motes establish an sensor network
with power managementwith power management

3.3.Sensor network detectsSensor network detects
vehicles and wakes up vehicles and wakes up

the sensor nodesthe sensor nodes

ZzzZzz......

Basic Technologies Basic Technologies – Sensor Networks

SentrySentry

Internet-based Systems – The Internet of Things

The “Internet of Things” will be the result of the convergence between
Embedded Systems and the Internet.

Basic idea: Use the Internet Protocol Suite for Human/ES or ES/ES interaction

Evolution towards specific “critical” internets ?

This is not as easy as it seems.

Some major breakthroughs needed:

� Wireless sensor networks and RFID technologies.

� Advances in miniaturization and nanotechnology mean that smaller and
smaller things will have the ability to interact and connect.

� Getting IP down to small devices and implementing features for QoS
control and responsiveness.

� Standards e.g. for naming objects, tools and platforms.

� Improving overall security, and reliability of the internet.

O
V
E
R
V
I
E
W

16

� System Design Today

� Basic Technologies

� Applications

� Research Challenges

� Marry Physicality and Computation

� Encompass Heterogeneity – Unified Composition Paradigm

� Cope with Complexity - Constructivity

� Cope with Uncertainty – Adaptivity

� Work Directions

� Discussion

Applications – Transportation

17

Make transportation safer, more efficient, less polluting

Active safety:
assist/protect the driver
by using drive-by-wire
and brake-by-wire
technology

Automated Highways:
intelligent transportation
system technology
designed to provide for
driverless cars on specific
rights-of-way.

Applications – Health

18

Brain image analysis

Robot-assisted surgery

Applications – Health

19

Health monitoring

ECG

Blood pressure meter

Thermometer

Applications – Smart Grids

O
V
E
R
V
I
E
W

21

� System Design Today

� Basic Technologies

� Applications

� Research Challenges

� Marry Physicality and Computation

� Encompass Heterogeneity – Unified Composition Paradigm

� Cope with Complexity - Constructivity

� Cope with Uncertainty – Adaptivity

� Work Directions

� Discussion

22

Marry Physicality and Computation

Computing:
algorithms
protocols
architectures

Environment
constraints:
Performance
(deadlines, jitter,
throughput)

Processor
constraints:
CPU speed
memory
power
failure rates
temperature

EMBEDDED SYSTEM

23

Marry Physicality and Computation

Embedded SW Design
cannot ignore HW design

Computing:
algorithms
protocols
architectures

Environment
constraints:
Performance
(deadlines, jitter,
throughput)

Processor
constraints:
CPU speed
memory
power
failure rates
temperature

EMBEDDED SYSTEM

24

Marry Physicality and Computation

Embedded SW Design
cannot ignore control design

Computing:
algorithms
protocols
architectures

Environment
constraints:
Performance
(deadlines, jitter,
throughput)

Processor
constraints:
CPU speed
memory
power
failure rates
temperature

EMBEDDED SYSTEM

25

Marry Physicality and Computation
Embedded SW Design coherently integrates all these

We need to revisit and revise computing to integrate methods
from EE and Control

Computing:
algorithms
protocols
architectures

Environment
constraints:
Performance
(deadlines, jitter,
throughput)

Processor
constraints:
CPU speed
memory
power
failure rates
temperature

EMBEDDED SYSTEM

Marry Physicality and Computation

2626

Physical Systems
Engineering

Analytic Models
Component: transfer function
Composition: parallel
Connection: data flow

Computing Systems
Engineering

Computational Models
Component: subroutine
Composition: sequential
Connection: control flow

Marry Physicality and Computation

27

Matlab/Simulink
Model

Marry Physicality and Computation

UML Model
(Rational Rose)

O
V
E
R
V
I
E
W

29

� System Design Today

� Basic Technologies

� Applications

� Research Challenges

� Marry Physicality and Computation

� Encompass Heterogeneity – Unified Composition Paradigm

� Cope with Complexity - Constructivity

� Cope with Uncertainty – Adaptivity

� Work Directions

� Discussion

Encompass Heterogeneity – Unified Composition
Paradigm

Heterogeneity: Embedded systems are built from components with different
characteristics

� Execution: synchronous and asynchronous components

� Interaction: function call, broadcast, rendezvous, monitors

� Abstraction levels: hardware, execution platform, application software

� SW Component frameworks:
� Coordination languages extensions of programming languages e.g.

BPEL, Javaspaces, TSpaces, Concurrent Fortran, NesC
� Middleware e.g. Corba, Javabeans, .NET
� Software development environments: PCTE, SWbus, Softbench, Eclipse

� System modeling languages: Statecharts, SysML, Matlab/Simulink, AADL,
Ptolemy

� Hardware description languages: Verilog, VHDL, SystemC

Composition lies at the heart of the parallel computing challenge.
Without sane composition, there can be no reuse.

Thread-based programming Actor-based programming

Software Engineering Systems Engineering

Encompass Heterogeneity – Unified Composition
Paradigm

Build a component C satisfying given requirements f, from
� C0 a set of atomic components described by their behavior
� GL ={gl1, …, gli, …} a set of glue operators on components

c1 c’1
gl1

c2 c’2

gl12
satisfies fgl2

�Move from single low-level composition operators e.g. automata-based
to families of high-level composition operators e.g. protocols, controllers

�We need a unified composition paradigm for describing and analyzing
the coordination between components to formulate system designs in
terms of tangible, well-founded and organized concepts

Encompass Heterogeneity – Unified Composition
Paradigm

O
V
E
R
V
I
E
W

33

� System Design Today

� Basic Technologies

� Applications

� Research Challenges

� Marry Physicality and Computation

� Encompass Heterogeneity – Unified Composition Paradigm

� Cope with Complexity - Constructivity

� Cope with Uncertainty – Adaptivity

� Work Directions

� Discussion

34

Cope with Complexity – Constructivity

�Today, a posteriori verification at high development costs limited to
medium complexity systems
�Tomorrow, correct-by-construction results should advantageously take
into account structuring of components and their features.

There is a large space to be explored, between full constructivity and a
posteriori verification. Develop correct-by-construction results
� For particular

� architectures (e.g. client-server, star-like, time-triggered)

� programming models (e.g. synchronous, data-flow)

� execution models (e.g. event triggered preemptable tasks)

� For specific classes of properties such as deadlock-freedom, mutual
exclusion, timeliness

Constructivity – Compositionality

Build correct systems from
correct components: rules for
proving global properties from
properties of
individual components

We need compositionality results for the preservation of progress properties such as
deadlock-freedom and liveness as well as extra-functional properties

☺ ☺
gl

☺

ci sat Pi implies ∀gl ∃gl~ sat gl(P1, ..,Pn)
gl

c1 cn

~

Constructivity – Composability

Essential properties of
components are preserved
when they are integrated ☺

gl

☺ ☺
gl

/

Property stability phenomena are poorly understood.
We need composability results e.g. non interaction of features in middleware,
composability of scheduling algorithms, of Web services, of aspects

sat Pgl
c1 cn

and sat P’gl’
c1 cn

implies sat P∧P’gl ⊕ gl’
c1 cn

Constructivity – Checking for Deadlock-freedom
Checking global deadlock-freedom of a system

built from deadlock-free components,
by separately analyzing the components and the architecture.

C1 C2
p1 p2

Potential deadlock
D = en(p1) ∧ ¬ en(p2) ∧

en(q2) ∧ ¬ en(q1)

Potential deadlock
D = en(p1) ∧ ¬ en(p2) ∧

en(q2) ∧ ¬ en(q3) ∧
en(r3) ∧ ¬ en(r1)

C2
p1

q1 q2
C1

p2

p1 p2

q3r3

C1 C2

C3

r1 q2

Constructivity – Checking for Deadlock-freedom

Eliminate potential deadlocks D by checking that
I∧D=false

where I is a global invariant computed compositionally

Example Nb
Comp

Nb
Ctrl St

Nb
Bool Var

Nb
Int Var

Nb
Pot Deadl

Nb
Rem Deadl

time

3s

1m05s

17m46s

24m16s

24m37s

7m14s

Temperature Control (2
rods)

3 6 0 3 8 3

Temperature Control (4
rods)

5 10 0 5 32 15

UTOPAR
(300 cars, 900 CUs)

1201 3903 300 1204 ?? 0 7m48s

UTOPAR
(200 cars,1600 CUs)

1801 4603 200 804 ?? 0

Philos (9000 philos) 18000 53000 0 0 ?? 1

ATM (600 atms) 1202 13204 0 1200 ?? 0

Gas Station (700
pumps+7000 customers)

7701 30102 0 0 ?? 0

Results obtained by using the D-Finder tool: http://www-verimag.imag.fr/~thnguyen/tool/

Constructivity – Checking for Deadlock-freedom

O
V
E
R
V
I
E
W

40

� System Design Today

� Basic Technologies

� Applications

� Research Challenges

� Marry Physicality and Computation

� Encompass Heterogeneity – Unified Composition Paradigm

� Cope with Complexity - Constructivity

� Cope with Uncertainty – Adaptivity

� Work Directions

� Discussion

Cope with Uncertainty - Adaptivity

41

For complex systems it is impossible to foresee at design time bFor complex systems it is impossible to foresee at design time by a casey a case--
byby--case analysis all the potentially critical situationscase analysis all the potentially critical situations

AdaptivityAdaptivity

Systems must provide a service meeting given requirements in intSystems must provide a service meeting given requirements in interaction with eraction with
uncertain and unpredictable environmentsuncertain and unpredictable environments

Uncertainty is characterized as the difference between average aUncertainty is characterized as the difference between average and worstnd worst--case case
system behavior. It is drastically increasing due to:system behavior. It is drastically increasing due to:

�� Interaction with complex, nonInteraction with complex, non--deterministic, possibly hostile external deterministic, possibly hostile external
environmentsenvironments

�� Execution platforms with sophisticated HW/SW architectures Execution platforms with sophisticated HW/SW architectures
(layering, caches, speculative execution, (layering, caches, speculative execution, ……))

is the capacity of a system to meet given requirements is the capacity of a system to meet given requirements
including safety, security, and performance, in the presence of including safety, security, and performance, in the presence of uncertainty uncertainty
in its external or execution environment. in its external or execution environment.

Cope with Uncertainty – Adaptivity

42

Learning
Estimation of parameters of the model

Model-based Strategy
Choosing amongst possible objectives

(frequencies) meeting temperature constraints

SYSTEM

Configuration and Planning
Meeting a given objective

CONTROLLER

frequencies temperature

Cope with Uncertainty – Adaptivity

43

Planning

Learning

Strategy and decision making

Movie would have been better …

Go to: 1) Stadium 2) Movie 3) Restaurant

Cope with Uncertainty – Adaptivity

44

Learning: estimate execution times

Management of objectives: find a schedule
maximizing quality and meeting deadlines

Planning: compute best schedules for given quality

c1(q)
d1

c2(q)
d2

c4(q)
d4 c6(q)

d6

c5(q)
d5

c3(q)
d3

MPEG
encoder

(next action, q) time

Cope with Uncertainty - Adaptivity

45

O
V
E
R
V
I
E
W

46

� System Design Today

� Basic Technologies

� Applications

� Research Challenges

� Marry Physicality and Computation

� Encompass Heterogeneity – Unified Composition Paradigm

� Cope with Complexity - Constructivity

� Cope with Uncertainty – Adaptivity

� Work Directions

� Discussion

Model-based Design - Principle

Design Method

RequirementsRequirements
ApplicationApplication

SWSW

ImplementationImplementation

Execution Execution
PlatformPlatform

≈≈

Model-based Design - Example

Compiler

Round RobinRound RobinSynchronous Synchronous
ProgramProgram

ImplementationImplementation

Monolithic codeMonolithic code

≈≈

Model-based Design - Example

Compiler

SchedulingScheduling
(RMA)(RMA)

ADAADA
programprogram

ImplementationImplementation

Dedicated runtime
for multitasking

≈≈

Model-based Design Flow

Code
Generation

Implementation

Translation

Application SW
model

ApplicationApplication
SWSW

System
model

HWHW
Infrastructure Infrastructure MappingMapping

Transformation

Transformation

Distributed System
model

ProtocolsProtocols

51

Compiler
Compiler

Task1 Task2 Task3 Task4Event
Handler

Synchronization and resource management

Compiler

Security

Scheduler

Platform

Timing
QoS

Architecture
modelApplication SW

Resource-aware Compilation

52

� Minimal architectures, reconfigurable, adaptive, with features for
safety and security

� Give up control to the application –
move resource management outside the kernel

� Supply and allow adaptive scheduling policies which take into
account the environmental context (ex: availability of critical
resources such as energy).

Operating systems are often:

� Far more complex than necessary

� Undependable

� With hidden functionality

� Difficult to manage and use efficiently

Move towards standards dedicated to specific domains
Ex: OSEK, ARINC, JavaCard, TinyOS, Symbian

Operating Systems

53

Automation applications are of paramount importance –
their design and implementation raise difficult problems

Hybrid Systems – active research area

� Combination of continuous and discrete control techniques

� Multi-disciplinary integration aspects (control, numerical analysis,
computing)

� Modeling and Verification

� Distributed and fault-tolerant implementations (influence
communication delays, clock drift, aperiodic sampling)

ª Use of control-based techniques for adaptivity

Control for Embedded Systems

54

Work Directions :
� Methodologies for domain-specific standards, such as :

- DO-178B Process Control Software Safety Certification
- Integrated Modular Avionics; Autosar
- Common Criteria for Information Technology Security Evaluation

� Certification methods and tools

� Architectures, protocols and algorithms for fault-tolerance and security taking into
account QoS requirements (real-time, availabability)

� Traditional techniques based on massive redundancy are of limited value

� Dependability should be a guiding concern from the very start of system
development. This applies to programming style, traceability, validation
techniques, fault-tolerance mechanisms, ...

Dependability

55

Adaptive distributed real-time systems, inherently dynamic, must adapt to
accommodate workload changes and to counter uncertainties in the
system and its environment

� Clock synchronization, parameter settings

� Specific routing algorithms

� Location discovery, neighbor discovery

� Group management (dormant, active-role assignment)

� Self-organization : backbone creation, leader election, collaboration
to provide a service

� Power management : turn-off of dormant nodes, periodical rotation
of active nodes to balance energy

Networked Embedded Systems

Integration of Methods and Tools

56

SystemC SystemC MatlabMatlab//SimulinkSimulink SDLSDL UML UML
AADLAADL

VHDL LustreVHDL Lustre--Esterel ADA RTEsterel ADA RT--JavaJava

OSEK ARINC OSEK ARINC RavenscarRavenscar JavaCardJavaCard SymbianSymbian TinyOSTinyOS

μμcontrollercontroller DSP FPGA DSP FPGA SoCSoC NoCNoC

AutosarAutosar .NET .NET JiniJini
CorbaCorbaTTP CAN TTP CAN SafeBusSafeBus Bluetooth Bluetooth WiFiWiFi

VxWorksVxWorks POSIX POSIX WinCEWinCE

C C++ C# JavaC C++ C# Java

HW

OS

NW

MW

PR

MO

ed

O
V
E
R
V
I
E
W

57

� System Design Today

� Basic Technologies

� Applications

� Research Challenges

� Marry Physicality and Computation

� Encompass Heterogeneity – Unified Composition Paradigm

� Cope with Complexity - Constructivity

� Cope with Uncertainty – Adaptivity

� Work Directions

� Discussion

58

Embedded Systems

� break with traditional Systems Engineering. They need new design
techniques guaranteeing both functionality and quality (performance and
dependability) and taking into account market constraints

� are an opportunity for reinvigorating and extending Informatics with
new paradigms from Electrical Engineering and Control Theory

Discussion

We need methods and supporting unified model-based design flows for
productivity, correctness and performance
� Programmability: Parallel programming supporting heterogeneous

component-based programming models

� Adaptivity: SW should take into account HW variability

� Performance: choose SW partitioning, data management and
interaction model so as to reduce communication overhead

� “Magic Compilation Chain”: automatic SW deployment techniques

59

THANK YOUTHANK YOU

	Embedded Systems Design – Challenges and Work Directions
	The Evolution of Informatics
	Embeded Systems
	System Design – New Trends
	System Design – State of the Art
	System Design – Still a long way to go
	System Design – Still a long way to go
	System Design – a Long Way to go
	Basic Technologies – Multicore Systems
	Basic Technologies – Multicore Systems
	Basic Technologies – Sensor Networks
	Basic Technologies – Sensor Networks
	Internet-based Systems – The Internet of Things
	 Applications – Transportation�
	 Applications – Health�
	 Applications – Health�
	Applications – Smart Grids
	Marry Physicality and Computation
	Marry Physicality and Computation
	Marry Physicality and Computation
	Encompass Heterogeneity – Unified Composition Paradigm
	Encompass Heterogeneity – Unified Composition Paradigm
	Constructivity – Compositionality
	Constructivity – Composability
	Cope with Uncertainty - Adaptivity�
	Cope with Uncertainty – Adaptivity
	 Cope with Uncertainty – Adaptivity �
	Cope with Uncertainty – Adaptivity�
	Cope with Uncertainty - Adaptivity�
	Model-based Design - Principle
	Model-based Design - Example
	Model-based Design - Example
	Model-based Design Flow
	Integration of Methods and Tools�

