

Distributed quasi-Newton method and its application to the optimal reactive power flow problem

DEPARTMENT OF INFORMATION ENGINEERING

UNIVERSITY OF PADOVA

Power distribution networks

Feednetback Workshop Annecy Sep 16, 2010

Reactive power compensators

3 Feednetback Workshop Annecy Sep 16, 2010

Distributed Generation

The electronic interface of every micro generator can act as a compensator: micro-hydroelectric, combined heat and power, wind, solar, waste thermal generation.

- the distribution network is partially unknown and unmonitored
- these agents can connect and disconnect
- because of the stochastic character of the energy sources and the large number of DG units, a centralized dispatchment is too complex
- security of the energy supply may be jeopardized if a great amount of data is handled online by a single control center.

Simplified model

4 Feednetback Workshop Annecy Sep 16, 2010 Consider a tree describing the low-mid voltage distribution network.

 q_i is the injected reactive power, f_i is the reactive power flow.

Optimization problem

5 Feednetback Workshop Annecy Sep 16, 2010 The optimization problem of having minimal power losses on the network corresponds to having minimal reactive power flows

min
$$F(f_2,\ldots,f_N) = \sum_{i=2}^N f_i^2 k_i.$$

subject to

• $\sum_{i \in C \cup U} q_i = 0$ 1 constraint - reactive power conservation • $f_i = f_i(q_1, \dots, q_N)$ N-1 constraints - power flow equations or in matricial form

min
$$\mathbf{f}^T \frac{\mathbf{K}}{2} \mathbf{f}$$

subject to $\mathbf{f} = \mathbf{A}\mathbf{q} + \mathbf{B}\mathbf{\bar{q}}$
 $\mathbf{1}_{N_C}^T \mathbf{q} + \mathbf{1}_{N_U}^T \mathbf{\bar{q}} = 0$

Optimization problem

o Feednetback Workshop Annecy Sep 16, 2010 By eliminating the second constraint, one obtains the quadratic problem

min
$$J(\mathbf{q}) = \mathbf{q}^T \frac{\mathbf{M}}{2} \mathbf{q} + \mathbf{q}^T \mathbf{m}$$

subject to $\mathbf{1}_{N_C}^T \mathbf{q} = c$.

which has the closed form solution

$$\mathbf{q}^* = -\mathbf{M}^{-1} \left[\mathbf{m} - \frac{\left(c + \mathbf{1}_{N_C}^T \mathbf{M}^{-1} \mathbf{m} \right) \mathbf{1}_{N_C}}{\mathbf{1}_{N_U}^T \mathbf{M}^{-1} \mathbf{1}_{N_C}} \right].$$

Distributing the problem

Feednetback Workshop Annecy Sep 16, 2010

Why this problem can still be interesting?

- unknown hessian M (depends on the topology)
- unknown constant *c* (depends on the demands)
- unknown vector **m** (depends on the demands).

Distributing the problem

Feednetback Workshop Annecy Sep 16, 2010

Why this problem can still be interesting?

- unknown hessian M (depends on the topology)
- unknown constant *c* (depends on the demands)
- unknown vector **m** (depends on the demands).

Gradient driven optimization algorithms

Most of the algorithms for the solution of convex optimization problems are driven by the gradient, and assume that the gradient is available.

$$\mathbf{q}(t+1) = \mathbf{q}(t) - \mathbf{\Gamma}\mathbf{g}(\mathbf{q}(t))$$

Distributed gradient estimation

The gradient can be rewritten as

o Feednetback Workshop Annecy Sep 16, 2010

$$\mathbf{g} = \mathbf{A}^T \mathbf{K} \mathbf{A} \mathbf{q} + \mathbf{A}^T \mathbf{K} \mathbf{B} \bar{\mathbf{q}} = \mathbf{M} \mathbf{q} + \mathbf{m} = \mathbf{A}^T \mathbf{K} \mathbf{f} = \begin{bmatrix} \dots \\ \sum_{i \in \mathcal{E} - \mathcal{P}_i} k_i f_i \\ \dots \end{bmatrix},$$
$$\mathbf{g}_i - \mathbf{g}_j = \sum_{\ell \in \mathcal{P}_{ii}} \delta_\ell(i, j) k_\ell f_\ell \approx \mathbf{v}_i - \mathbf{v}_j.$$

The gradient can then be estimated element-wise and up to a constant from the steady state of the system:

$$\mathbf{g}_i = \mathbf{v}_i + \xi.$$

Distributing the problem

 $\mathbf{q}(t+1) = \mathbf{q}(t) - \mathbf{\Gamma} \mathbf{g}$

If a communication constraint is enforced via a graph \mathcal{G} , then Γ cannot be a generic gain matrix.

Sparse **Г**

The simplest approach consists in enforcing sparsity of $\pmb{\Gamma}$ so that it is consistent with $\mathcal{G}.$

However, a sparse $\pmb{\Gamma}$ is unlikely to solve the problem efficiently, because

- the global constraint couples the agents' states
- non-separable cost functions couple the agents' optimal choice
- $\bullet\,$ nobody knows the whole system and can design $\pmb{\Gamma}\,$

Example: Newton descent

Feednetback Workshop Annecy Sep 16, 2010 If the network topology is fully known and communication constraints are relaxed, it is possible to implement a constrained Newton algorithm that guarantees 1-step convergence:

Example: Newton descent

Feednetback Workshop Annecy Sep 16, 2010 If the network topology is fully known and communication constraints are relaxed, it is possible to implement a constrained Newton algorithm that guarantees 1-step convergence:

$$\mathbf{q}(t+1) = \mathbf{q}(t) - \mathbf{\Gamma}\mathbf{g} = \mathbf{q}(t) - \mathbf{M}^{-1}\mathbf{g} + \frac{\mathbf{1}^{T}\mathbf{M}^{-1}\mathbf{g}}{\mathbf{1}^{T}\mathbf{M}^{-1}\mathbf{1}}\mathbf{M}^{-1}\mathbf{1}$$
$$\mathbf{\Gamma} = \mathbf{M}^{-1} - \frac{\mathbf{M}^{-1}\mathbf{1}\mathbf{1}^{T}\mathbf{M}^{-1}}{\mathbf{1}^{T}\mathbf{M}^{-1}\mathbf{1}}$$

Or, if an approximation for M^{-1} is available, one can implement an approximate Newton step

$$\mathbf{q}(t+1) = \mathbf{q}(t) - \mathbf{H}\mathbf{g} + rac{\mathbf{1}^T\mathbf{H}\mathbf{g}}{\mathbf{1}^T\mathbf{H}\mathbf{1}}\mathbf{H}\mathbf{1}$$

In the approximate Newton descent step it is easy to recognize two parts

$$\mathbf{q}(t+1) = \mathbf{q}(t) - \mathbf{H}\mathbf{g} + rac{\mathbf{1}^T \mathbf{H}\mathbf{g}}{\mathbf{1}^T \mathbf{H}\mathbf{1}}\mathbf{H}\mathbf{1}$$

In the approximate Newton descent step it is easy to recognize two parts

$$\mathbf{q}(t+1) = \mathbf{q}(t) - \mathbf{Hg} + rac{\mathbf{1}^T \mathbf{Hg}}{\mathbf{1}^T \mathbf{H1}} \mathbf{H1}$$

• an unconstrained descent step (requires knowledge of the system)

In the approximate Newton descent step it is easy to recognize two parts

$$\mathsf{q}(t+1) = \mathsf{q}(t) - \mathsf{Hg} + rac{\mathbf{1}^{\mathcal{T}}\mathsf{Hg}}{\mathbf{1}^{\mathcal{T}}\mathsf{H1}}\mathsf{H1}$$

- an unconstrained descent step (requires knowledge of the system)
- a projection step (requires knowledge of the others' choice)

Feednetback Workshop Annecy Sep 16, 2010

 $\mathbf{q}(t+1) = \mathbf{q}(t) - \mathbf{H}\mathbf{g} + rac{\mathbf{1}^T \mathbf{H} \mathbf{g}}{\mathbf{1}^T \mathbf{H} \mathbf{1}} \mathbf{H} \mathbf{1}$

Feednetback Workshop Annecy Sep 16, 2010

$$\mathbf{q}(t+1) = \mathbf{q}(t) - \mathbf{Hg} + \frac{\mathbf{1}^T \mathbf{Hg}}{\mathbf{1}^T \mathbf{H1}} \mathbf{H1}$$

Sparse H

By choosing a sparse approximation H for M^{-1} , the computation of Hg and H1 depends only on neighbors' data.

Feednetback Workshop Annecy Sep 16, 2010

$$\mathbf{q}(t+1) = \mathbf{q}(t) - \mathbf{Hg} + \frac{\mathbf{1}^T \mathbf{Hg}}{\mathbf{1}^T \mathbf{H1}} \mathbf{H1}$$

$\mathsf{Sparse}\ \mathbf{H}$

By choosing a sparse approximation H for M^{-1} , the computation of Hg and H1 depends only on neighbors' data.

Consensus algorithm

By running average consensus algorithms on the vectors $[\mathbf{H}_i \mathbf{g} \ \mathbf{H}_i \mathbf{1}]^T$, nodes agree on the projection step.

12 Feednetback Workshop Annecy Sep 16, 2010

$$\mathbf{q}(t+1) = \mathbf{q}(t) - \mathbf{Hg} + \frac{\mathbf{1}^T \mathbf{Hg}}{\mathbf{1}^T \mathbf{H1}} \mathbf{H1}$$

$\mathsf{Sparse}\ \mathbf{H}$

By choosing a sparse approximation H for M^{-1} , the computation of Hg and H1 depends only on neighbors' data.

Consensus algorithm

By running average consensus algorithms on the vectors $[\mathbf{H}_i \mathbf{g} \ \mathbf{H}_i \mathbf{1}]^T$, nodes agree on the projection step.

This approach enables a whole class of methods in the form

$$\mathbf{q}_i(t+1) = \mathbf{q}_i(t) - \gamma_i(\mathbf{q}_j, \mathbf{g}_j(\mathbf{q}), j \in \mathcal{N}_i; \eta_i, \mathbf{x})$$

13 Feednetback Workshop Annecy Sep 16, 2010

Quasi-Newton methods

In these methods an estimate of the hessian's inverse is updated at every step so that

- it satisfies the secant condition $\mathbf{H}(t+1)\Delta \mathbf{g}(t) = \Delta \mathbf{q}(t)$ (where **H** is the estimate of the inverse of the hessian, and **d** is the projection of the gradient of the constraint)
- it minimizes $\|\mathbf{H}(t+1) \mathbf{H}(t)\|$.

13 Feednetback Workshop Annecy Sep 16, 2010

Quasi-Newton methods

In these methods an estimate of the hessian's inverse is $\ensuremath{\mathsf{updated}}$ at every step so that

- it satisfies the secant condition $\mathbf{H}(t+1)\Delta \mathbf{g}(t) = \Delta \mathbf{q}(t)$ (where **H** is the estimate of the inverse of the hessian, and **d** is the projection of the gradient of the constraint)
- it minimizes $\|\mathbf{H}(t+1) \mathbf{H}(t)\|$.

A quasi-Newton method (Broyden's method) can be applied to our constrained optimization problem.

Feednetback Workshop Annecy Sep 16, 2010

$$\begin{aligned} \mathbf{q}(t+1) &= \mathbf{q}(t) - \mathbf{G}\mathbf{d}(t) \\ \mathbf{G}(t+1) &= \mathbf{G}(t) + \frac{[\Delta \mathbf{q} - \mathbf{G}\Delta \mathbf{d}]\Delta \mathbf{d}^{T}}{\Delta \mathbf{d}^{T}\Delta \mathbf{d}} \end{aligned}$$

where $\mathbf{d} = \Omega \mathbf{g}$.

Feednetback Workshop Annecy Sep 16, 2010

$$\mathbf{q}(t+1) = \mathbf{q}(t) - \mathbf{Gd}(t)$$
 $\mathbf{G}(t+1) = \mathbf{G}(t) + rac{[\Delta \mathbf{q} - \mathbf{G}\Delta \mathbf{d}]\Delta \mathbf{d}^T}{\Delta \mathbf{d}}$

where $\mathbf{d} = \Omega \mathbf{g}$. Update equation for the single node:

$$\mathbf{q}_i(t+1) = \mathbf{q}_i(t) - \mathbf{G}_i \mathbf{d}(t)$$

 $\mathbf{G}_i(t+1) = \mathbf{G}_i(t) + rac{[\Delta \mathbf{q}_i - \mathbf{G}_i \Delta \mathbf{d}] \Delta \mathbf{d}^T}{\Delta \mathbf{d}^T \Delta \mathbf{d}}$

Feednetback Workshop Annecy Sep 16, 2010

$$\mathbf{q}(t+1) = \mathbf{q}(t) - \mathbf{Gd}(t)$$

 $\mathbf{G}(t+1) = \mathbf{G}(t) + rac{[\Delta \mathbf{q} - \mathbf{G} \Delta \mathbf{d}] \Delta \mathbf{d}^T}{\Delta \mathbf{d}}$

where $\mathbf{d} = \Omega \mathbf{g}$. Update equation for the single node:

$$\mathbf{q}_i(t+1) = \mathbf{q}_i(t) - \mathbf{G}_i \mathbf{d}(t)$$

 $\mathbf{G}_i(t+1) = \mathbf{G}_i(t) + rac{[\Delta \mathbf{q}_i - \mathbf{G}_i \Delta \mathbf{d}] \Delta \mathbf{d}^T}{\Delta \mathbf{d}^T \Delta \mathbf{d}}$

.

Finite time convergence

We proved that this method converges in at most 2N steps.

Distributed quasi-newton method

Feednetback Workshop Annecy Sep 16, 2010

Communication constraints

Suppose that communication constraints are now enforced: the update equation must keep the estimate \mathbf{H} sparse.

$$\mathbf{H}(t+1) = \mathbf{H}(t) + \mathcal{P}_{\mathcal{E}}\left[\mathbf{D}^{+}(\Delta \mathbf{q} - \mathbf{H} \Delta \mathbf{g}) \Delta \mathbf{g}^{T}\right]$$

where

$$\left(\mathcal{P}_{\mathcal{E}}(\mathbf{A})
ight)_{ij} = egin{cases} \mathbf{A}_{ij} & ext{if } (i,j) \in \mathcal{E} \ 0 & ext{otherwise} \end{cases}$$

and

$$(\mathbf{D}^{+})_{ij} = \begin{cases} 1/\mathbf{g}^{(i)}{}^{\mathsf{T}}\mathbf{g}^{(i)} & \text{if } \mathbf{g}^{(i)} \neq 0\\ 0 & \text{if } \mathbf{g}^{(i)} = 0 \end{cases}$$

Distributed quasi-newton method

16 Feednetback Workshop Annecy Sep 16, 2010 Let's complete the algorithm by introducing the projection step: $\mathbf{1}^T \mathbf{H}(t) \mathbf{g}(t)$

$$\mathbf{q}(t+1) = \mathbf{q}(t) - \mathbf{H}(t)\mathbf{g}(t) + \frac{\mathbf{I}^{T}\mathbf{H}(t)\mathbf{g}(t)}{\mathbf{I}^{T}\mathbf{H}(t)\mathbf{1}}\mathbf{H}\mathbf{1}$$

obtaining

Distributed quasi-Newton method

$$\mathbf{q}_i(t+1) = \mathbf{q}_i(t) - \mathbf{H}_i(t)^T \mathbf{g}^{(i)}(t) + \mathbf{x} \mathbf{H}_i(t)^T \mathbf{1}^{(i)}$$
$$\mathbf{H}_i(t+1) = \mathbf{H}_i(t) + \left[\Delta \mathbf{q}_i - \mathbf{H}_i(t)^T \Delta \mathbf{g}^{(i)}(t) \right] \frac{\mathbf{g}^{(i)}(t)}{\mathbf{g}^{(i)}(t)^T \mathbf{g}^{(i)}(t)}$$

where $x = \bar{z}_1/\bar{z}_2$, z being the result of consensus algorithm on

$$z^{(i)}(0) = \begin{bmatrix} \mathbf{H}_i(t)^{\mathsf{T}} \mathbf{g}^{(i)}(t) \\ \mathbf{H}_i(t)^{\mathsf{T}} \mathbf{1}^{(i)} \end{bmatrix}$$

Numerical simulations

17 Feednetback Workshop Annecy Sep 16, 2010

Numerical simulations

18 Feednetback Workshop Annecy Sep 16, 2010

Newton (solid), quasi-Newton (dashed), distribute quasi-Newton (dot-dashed), steepest descent (dotted).

Bolognani, S., and Zampieri, S. (2010).

Distributed Quasi-Netwon Method and its Application to the Optimal Reactive Power Flow Problem. In Proceedings of NECSYS 2010, Annecy, France.

Thanks!

Saverio Bolognani

Department of Information Engineering University of Padova (Italy)

saverio.bolognani@dei.unipd.it
http://www.dei.unipd.it/~sbologna

This work is licensed under the Creative Commons BY-NC-SA 2.5 Italy License

