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Reactive power compensators

Distributed Generation

The electronic interface of every micro
generator can act as a compensator:
micro-hydroelectric, combined heat and
power, wind, solar, waste thermal
generation.

@ the distribution network is partially unknown and
unmonitored

@ these agents can connect and disconnect

@ because of the stochastic character of the energy sources
and the large number of DG units, a centralized
dispatchment is too complex

@ security of the energy supply may be jeopardized if a great
amount of data is handled online by a single control center.



Simplified model

Consider a tree describing the low-mid voltage distribution
network.

g; is the injected reactive power, f; is the reactive power flow.



Optimization problem

The optimization problem of having minimal power losses on
the network corresponds to having minimal reactive power flows
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Optimization problem

By eliminating the second constraint, one obtains the quadratic

problem

M
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Distributing the problem

Why this problem can still be interesting?
@ unknown hessian M (depends on the topology)
@ unknown constant ¢ (depends on the demands)

@ unknown vector m (depends on the demands).
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Gradient driven optimization algorithms

Most of the algorithms for the solution of convex optimization
problems are driven by the gradient, and assume that the
gradient is available.

q(t +1) = q(t) — T'g(a(t))



Distributed gradient estimation

The gradient can be rewritten as

g=ATKAq+ATKBG=Mq+m=ATKf = Y, p kifi| ,

gi — 8 = Z Oe(i,J)kefy ~ vi — vj.
EE’PU

The gradient can then be
estimated element-wise and
up to a constant from the
steady state of the system:

gi=v;+¢.




Distributing the problem

]

Feednetback q(t + 1) — q(t) - rg

e If a communication constraint is enforced via a graph G, then I’
cannot be a generic gain matrix.

Sparse I’

The simplest approach consists in enforcing sparsity of I' so
that it is consistent with G.

However, a sparse I is unlikely to solve the problem efficiently,
because

o the global constraint couples the agents’ states

@ non-separable cost functions couple the agents’ optimal
choice

@ nobody knows the whole system and can design I’



Example: Newton descent

If the network topology is fully known and communication
constraints are relaxed, it is possible to implement a constrained
Newton algorithm that guarantees 1-step convergence:

)
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Example: Newton descent

If the network topology is fully known and communication
constraints are relaxed, it is possible to implement a constrained
Newton algorithm that guarantees 1-step convergence:
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Or, if an approximation for M~! is available, one can
implement an approximate Newton step

1"Hg

lTHll_|1

q(t +1) =q(t) - Hg +



Decomposition: descent + projection

In the approximate Newton descent step it is easy to recognize
two parts

q(t+1) =q(t) — Hg +
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Decomposition: descent + projection

In the approximate Newton descent step it is easy to recognize
two parts

q(t+1) = q(t) - Hg + -5~

@ an unconstrained descent step (requires knowledge of the
system)

@ a projection step (requires knowledge of the others’ choice)



Sparse approximations + consensus
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Sparse approximations + consensus
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q(t+1) = q(t)—Hg+1TH1H1

By choosing a sparse approximation H for M1, the
computation of Hg and H1 depends only on neighbors’ data.
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q(t+1) = q(t)—Hg+1TH1H1

By choosing a sparse approximation H for M1, the
computation of Hg and H1 depends only on neighbors’ data.
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Consensus algorithm

By running average consensus algorithms on the vectors
[Hig H;1]", nodes agree on the projection step.



Sparse approximations + consensus

T

1'Hg
q(t+1) = q(t)—Hg+1TH1H1

By choosing a sparse approximation H for M1, the
computation of Hg and H1 depends only on neighbors’ data.

Consensus algorithm

By running average consensus algorithms on the vectors
[Hig H;1]", nodes agree on the projection step.

This approach enables a whole class of methods in the form

qi(t +1) = qi(t) — vi(aj, gi(a),Jj € Ni;ni, x)



Quasi-Newton method

Quasi-Newton methods

In these methods an estimate of the hessian’s inverse is
updated at every step so that

o it satisfies the secant condition H(t 4+ 1)Ag(t) = Aq(t)
(where H is the estimate of the inverse of the hessian, and
d is the projection of the gradient of the constraint)

@ it minimizes |[H(t 4+ 1) — H(¢)||.



Quasi-Newton method

Quasi-Newton methods

In these methods an estimate of the hessian’s inverse is
updated at every step so that

o it satisfies the secant condition H(t 4+ 1)Ag(t) = Aq(t)
(where H is the estimate of the inverse of the hessian, and
d is the projection of the gradient of the constraint)

@ it minimizes |[H(t 4+ 1) — H(¢)||.

A quasi-Newton method (Broyden's method) can be applied to
our constrained optimization problem.



Quasi-Newton method

a(t +1) = q(t) - Gd(¢)
[Aq — GAd]AdT

G(t+1) = G(t) + =

where d = Qg.



Quasi-Newton method

a(t +1) = q(t) - Gd(¢)
[Aq — GAd]AdT
AdT Ad

G(t+1) = G(t) +

where d = Qg.
Update equation for the single node:

ai(t +1) = ai(t) - Gid(t)

[Aq,- — G,Ad]Ad T
AdTAd

Gi(t+1)=Gi(t) +



Quasi-Newton method

a(t +1) = q(t) - Gd(¢)
[Aq — GAd]AdT

G(t+1) = G(t) + =

where d = Qg.
Update equation for the single node:

qi(t +1) = qi(t) — G;d(t)
[Ag; — G;Ad]AdT

Gi(t+1)=Gi(t) + AdT Ad

Finite time convergence

We proved that this method converges in at most 2/V steps.



Distributed quasi-newton method

Communication constraints

Suppose that communication constraints are now enforced: the
update equation must keep the estimate H sparse.

H(t+1) = H(t) + P [D(Aq — HAg)AgT |,

where
0 otherwise

(Pe(A)); = {

and
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Distributed quasi-newton method

Let's complete the algorithm by introducing the projection step:
16

Feednetback T
alt +1) = a(e) ~ HtE(0) + g g M

obtaining

Distributed quasi-Newton method

ai(t +1) = qi(t) — Hi(t)"g)(t) + xH;(t) "1()

g()(t)
g (t)Tgl(t)

where x = 71 /2, z being the result of consensus algorithm on

20(0) = lH,-a)Tg(")(t)] .

Hi(t+1) = Hi(t) + [Aa; — Hi(t) T ag)(1)]

H,'(t)T].(i)



Numerical simulations
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Numerical simulations
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