Source Coding with Common Reconstruction and Action-dependent Side Information

Kittipong Kittichokechai, Tobias J. Oechtering and Mikael Skoglund

KTH Royal Institute of Technology, School of EE and ACCESS Center, Communication Theory Lab, Stockholm, Sweden

FeedNetback Junior Workshop, 16 September 2010

Outline

Motivation and Related Work

Main Problem

- Main Result
- Proof Outline
- Example

Related Work: Source Coding with Side Information

• Source coding with side information at the decoder [Wyner and Ziv '76]

 Source coding with action-dependent side information "Vending machine" [Weissman and Permuter '09]

 \Rightarrow Decoder can adjust the quality of SI.

Related Work: Source Coding with Side Information

- Lossy source coding \Rightarrow distortion constraint
- What if the encoder wants to know the decoder reconstruction as well? ⇒ Common Reconstruction (CR) constraint [Steinberg '09]

- $\Rightarrow \lim_{n\to\infty} \Pr(\psi(X^n) \neq \hat{X}^n)) = 0$
- ⇒ Medical consultation (MRI results) [Steinberg '09]
- ⇒ Both sender and receiver share common knowledge of receiver's reconstruction, i.e., \hat{X}^n .

Our Contribution

 Combining the action-dependent SI and CR constraint for the source coding problem.

Figure: Action-dependent SI where action is chosen at the encoder and depends on a rate-limited link

Our Contribution

 Combining the action-dependent SI and CR constraint for the source coding problem.

- Active control: Action-dependent SI
- Passive control: CR constraint
- Potential application in networked control

Problem Formulation

- Encoder: $f^{(n)}: \mathcal{X}^n \to \mathcal{W}^{(n)} \times \mathcal{T}^{(n)}, |\mathcal{W}^{(n)}| = 2^{nR_1}, |\mathcal{T}^{(n)}| = 2^{nR_2}$ • Decoder: $g^{(n)}: \mathcal{W}^{(n)} \times \mathcal{T}^{(n)} \times S^n_d \to \tilde{\mathcal{X}}^n$
- CR mapping: $\psi^{(n)}: \mathcal{X}^n \times \mathcal{A}^n \to \hat{\mathcal{X}}^n, \ \hat{\mathcal{X}}^n = \tilde{\mathcal{X}}^n$

Goal: To find the rate region subject to

 $E[d(X^n, \tilde{X}^n)] \le D, \ E[\Lambda(A^n)] \le C, \ \lim_{n \to \infty} \Pr\left(\psi^{(n)}(X^n, A^n) \neq \tilde{X}^n\right) = 0.$

Rate Region

Definition: Rate Region

Let $\mathcal{P}(D, C)$ denote the set of all joint pmfs p which have the form

 $P_X(x)P_{A|X}(a|x)P_{S_d|X,A}(s_d|x,a)P_{\hat{X}|X,A}(\hat{x}|x,a),$

and satisfy

$$E\left[d(X, \hat{X})\right] \le D$$
, and $E[\Lambda(A)] \le C$.

For each $p \in \mathcal{P}(D, C)$, define

$$\mathcal{R}^*(D, C, p) \triangleq \{ (R_1, R_2) : R_1, R_2 \ge 0, R_1 + R_2 \ge I(X; \hat{X}, A) - I(\hat{X}; S_d | A) \},\$$

and

$$\mathcal{R}^*(D,C) \triangleq \bigcup_{p \in \mathcal{P}(D,C)} \mathcal{R}^*(D,C,p).$$

Theorem: Optimal Rate Region

The optimal rate region containing all achievable rate pairs for the memoryless source with action-dependent side information available at the decoder is given by

$$\mathcal{R}(D,C)=\mathcal{R}^*(D,C).$$

Remark:

⇒ No S_d in the distortion constraint $E[d(X, \hat{X})] \le D$ (different from that in Wyner-Ziv!)

Sum-rate Distortion and Cost Function

Corollary: Sum-rate distortion and cost function

The sum-rate distortion and cost function for the memoryless source with CR and action-dependent SI available at the decoder is given by

$$R_{ac,cr}(D,C) = \min_{p \in \mathcal{P}(D,C)} [I(X;\hat{X},A) - I(\hat{X};S_d|A)]$$

$$\stackrel{(*)}{=} \min_{p \in \mathcal{P}(D,C)} [I(X;A) + I(\hat{X};X|A,S_d)],$$

(*) follows from the Markov chain $\hat{X} - (X, A) - S_d$.

Outline of the Proof

The proof follows from arguments in [Wyner and Ziv '76], [Weissman and Permuter '09], and [Steinberg '09].

- Achievability: using a random coding argument
 - Codebook generation: $a^n(w) \sim P_A$, and $\hat{x}^n(t, v, w) \sim P_{\hat{X}|A}$
 - **Encoding**: given the source, find (t, v, w) s.t. \hat{x}^n, x^n , and a^n are jointly typical, then transmit t, w to the decoder and w to the action decoder. Also, put out $\hat{x}^n(t, v, w)$ as CR.
 - **Decoding**: put out $\tilde{x}^n = \hat{x}^n$ which is jointly typical with a^n and s^n_d
 - \Rightarrow Typicality guarantees the distortion, cost and CR constraints.
- Converse: standard information-theoretic argument

Example: To observe, or not to observe SI

• Comparing $R_{ac,cr}(D,C)$ to $R_{ac}(D,C)$ (without CR constraint)

• Consider the binary sets $X = \hat{X} = S_d = \mathcal{A} = \{0, 1\}$

X ~ Bern(1/2)

•
$$A = 1 \Rightarrow$$
 observe S_d

- Assume that an observation has a unit cost, i.e., Λ(A) = A and E[Λ(A)] = P_A(1) = C
- Consider the Hamming distance as a distortion measure

Rate-Distortion Curves

Rate-Distortion Curves

Rate-Distortion Curves

Performance loss due to CR constraint

- Source coding problem with action-dependent SI and CR (extension of Wyner-Ziv)
- The rate region is characterized (depending only on the sum rate constraint)
- Potential application in networked control

Thank you for your attention!

- Source coding problem with action-dependent SI and CR (extension of Wyner-Ziv)
- The rate region is characterized (depending only on the sum rate constraint)
- Potential application in networked control

Thank you for your attention!

References

K. Kittichokechai, T.J. Oechtering and M. Skoglund

Source coding with common reconstruction and action-dependent side information.

Information Theory Workshop (ITW) Proceedings, 2010.

A. D. Wyner and J. Ziv.

The rate-distortion function for source coding with side information at the decoder.

IEEE Trans. Inf. Theory, vol. IT-22, no. 1, pp. 1-10, Jan. 1976.

T. Weissman and H. Permuter.

Source coding with a side information "Vending Machine". *submitted to IEEE Trans. Inf. Theory*, 2009.

Y. Steinberg

Coding and common reconstruction.

IEEE Trans. Inf. Theory, vol. 55, no. 11, pp. 4995-5010, Nov. 2009.