Lyapunov-Krasovskii functionals for the study of stability and stabilisation of time-delay systems with application to networked control systems

University of Sevilla (SPAIN)

Dpto. de Ingeniería de Sistemas y Automática Universidad de Sevilla (SPAIN)

15 de septiembre de 2010

Contents

Introduction to the Lyapunov-Krasovskii functionals

2 Objectives

- General procedure
- 5 Example of application

Introduction

Stability of time-delay systems

- Lyapunov functions for systems without delays.
- Time-delay systems Lyapunov-Razumikhin (LRF) and Lyapunov-Krasovskii functionals (LKF).
- Results for continuous and discrete systems.

Review work

R.H. Gielen, M. Lazar and I.V. Kolmanovsky,"On Lyapunov theory for delay difference inclusions", Proceedings of the American Control Conference 2010.

The LKF approach

Goals

- Analyze stability of linear time delay systems [1].
- Robust stability analysis [2].
- Robust controller designs [3].
- Optimal controller designs [4].
- Mixed H_2/H_∞ controllers [4].

Related publications

- 1 L. Orihuela, P. Millán, C. Vivas and F.R. Rubio, "Robust stability of nonlinear networked control systems with interval time-varying delay". International Journal of Robust and Nonlinear Control.
- 2 P. Millán, L. Orihuela, C. Vivas and F.R. Rubio. "Improved delay-dependent stability for uncertain networked control systems with induced time-varying delays". 1st IFAC Workshop on Estimation and Control of Networked Systems, 2009.
- 3 J. Arriaga, P. Millán, I. Jurado, C. Vivas, F.R. Rubio, "Application of Network-based Robust Control to a Personal Pendulum Vehicle", European Control Conference ECC 2009
- 4 P. Millán, Luis Orihuela, C. Vivas and F.R. Rubio, "An optimal control L₂-gain disturbance rejection design for networked control systems". ACC 2009.

Non reliable communication channel

- Sampling.
- Randomly time-varying delays.
- Packages dropouts.
- Other: quantization, energy aware, etc.

Posible consequences

- Degradation of the control performance
- "Expensive" control
- Unstable behaviours

ъ

Modelling Networked Control Systems (NCSs) as Time Delay Systems (TDSs)

Scope

We work with Linear Time Invariant Systems (LTI) with differentiated uncertainties, disturbances and non-ideal networked links in sensor-to-controller and controller-to-actuator paths

$$\begin{aligned} \dot{x}(t) &= Ax(t) + Bu(t) + B_{\omega}\omega(t), \\ z(t) &= Cx(t) + Du(t), \\ x(t_0) &= x_0, \end{aligned}$$

- Sensor nodes sample data in a time-driven manner at time instants $t = j_k h$ such that $\{j_1, j_2, j_3, ...\} \subseteq \{1, 2, 3, ...\}$ and $j_k < j_{k+1}$.
- *t* ∈ [*t*_{*k*}, *t*_{*k*+1}) time intervals with constant control input.

SYSTEM UNCERTAINTIES

Parametric uncertainties

$$\begin{split} [A,B] \rightarrow [A^* + \Delta A(t), B^* + \Delta B(t)] \\ \Delta A(t) &= G_1 F_1(t) E_1, \\ \Delta B(t) &= G_2 F_2(t) E_2 \end{split}$$

Polytopic uncertainties

$$\begin{split} \Omega &= [A \quad B] / \Omega \in conv \{ \Omega_j, j = 1, ..., N \}, \\ \Omega_j &= [A^{(j)} \quad B^{(j)}]. \ \Omega = \sum_{i=1}^{12} \sum_{j=1}^N f_j \Omega_j, \\ 0 &\leq f_j \leq 1, \ \sum_{j=1}^N f_j = 1. \end{split}$$

Close loop NCS model (u = Kx)

$$\begin{aligned} \dot{x}(t) &= Ax(t) + BKx(t - \tau(t)) + B_{\omega}\omega(t), \quad \forall t \in [t_k, t_{k+1}), \\ z(t) &= Cx(t) + DKx(t - \tau(t)), \quad \forall t \in [t_k, t_{k+1}), \\ x(t) &= \phi(t), \quad t \in [t_0 - \tau_M, t_0], \end{aligned}$$

where $\tau(t) = t - t_k + \tau_{sc}(k) + \tau_{ca}(k)$

Sampling period *h*, Round-Trip delay τ_{RT} and consecutive package losses N_p bounded imply that $\tau(t)$ is bounded: $\underline{\tau}_{RT} \leq \tau(t) \leq \overline{\tau}_{RT} + (h+1)\overline{N}_p$

General procedure

Notation

- ζ Set of network parameters: τ_M, τ_m, N_p, h
- $\xi^T(t) = [x^T(t), x^T(t \tau(t)), ...]$
- $V(t, \zeta)$ Candidate to be a Lyapunov-Krasovskii functional
- $J = \int_{t_0}^{\infty} [\xi^T(t)\Phi(K)\xi(t)]dt$ Cost function.

LINEAR MATRIX INEQUALITIES FOR DIFFERENT CONTROL PROBLEMS

System stability

 $\frac{d}{dt}V(t,\zeta) = \epsilon^{T}(t)\Xi(K,\zeta)\epsilon(t), \quad \Xi(K,\zeta) < 0$

Constraint on the system L_2 gain

$$\frac{d}{dt}V(t,\zeta) = \epsilon^{T}(t)\Xi\epsilon(t) + z^{T}(t)z(t) - \gamma^{2}\omega^{T}(t)\omega(t), \quad \Xi(K,\zeta) < 0$$

Optimal control

Lyapunov-Krasovskii functionals for the study of stability and stabilisation of time-delay systems with applica

Technical arguments

- Schur complement
- S-procedure
- Finsler's lemma
- Leibnitz-Newton equation
- Jensen´s inequality
- Moon's inequality
- Slack matrices
- Polytopic descriptions
- One complementary algorithm

Control problems can be written in terms of Linear Matrix Inequalities

Application of the LK Approach to design H_2/H_{∞} controllers

Vehicle tracking system:

$$\begin{split} e(t) &= p_1(t) - p_2(t) - l_r, \\ \dot{e}(t) &= v_1(t) - v_2(t) = y(t), \\ \dot{y}(t) &= a_1(t) - a_2(t). \end{split}$$

Forces equilibrium:

$$\begin{split} \overline{F_i(t) - F_{a,i}(t) - F_{r,i}(t)} &= m_i a_i(t), \quad i = 1, 2. \\ \text{Aerodynamical drag: } F_a(t) &= \frac{1}{2} c_a A_T \rho_{aire} v^2(t), \\ \overline{\text{Rolling friction: } F_r(t)} &= c_r mg \cos(\alpha(t)). \end{split}$$

Parameters

- c_a, c_r: aerodynamic and tire-road drag coefficients, respectively.
- A_T: vehicle's aerodynamic cross-section.
- ρ_{air}: air density.
- m: vehicle mass.
- g: gravity constant.
- α(t): road slope angle.

System's linearization $\frac{d}{dt}\begin{pmatrix} \int e(t) \\ e(t) \\ e(t) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \int e(t) \\ e(t) \\ e(t) \end{pmatrix}$

$$\begin{pmatrix} J & c(t) \\ e(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & -c_2c_1 \end{pmatrix} \begin{pmatrix} J & c(t) \\ e(t) \\ y(t) \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ -c_3 \end{pmatrix} F_2(t) + \begin{pmatrix} 0 \\ 0 \\ c_3 \end{pmatrix} F_1(t)$$

Control Law:

$$F_2(t) = K \begin{pmatrix} \int e(t - \tau(t)) \\ e(t - \tau(t)) \\ y(t - \tau(t)) \end{pmatrix}$$

Local and Networked Control

< ≣⇒

Response with network effects for various disturbance attenuation levels

.⊒ →

Trading off performance vs. control effort

ъ

Conclusions

Conclusions

- Closing control loops over communication networks requires the participation of new analysis and design techniques.
- The LK approach makes possible the design of controller considering different specification.
- The problems are solved using LMI.
- Simulation examples shows the good performance of the controllers designed with this approach.

Thank you for your attention.

