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Introduction to the Lyapunov-Krasovskii functionals

Introduction

Stability of time-delay systems
@ Lyapunov functions for systems without delays.

@ Time-delay systems Lyapunov-Razumikhin (LRF) and
Lyapunov-Krasovskii functionals (LKF).

@ Results for continuous and discrete systems.

Continuous-time Discrete time

77

LKF —> LRF LKF —> LRF

LRF

Review work

o R.H. Gielen, M. Lazar and |.V. Kolmanovsky,"On Lyapunov theory for delay difference inclusions”,
Proceedings of the American Control Conference 2010.
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Objectives

The LKF approach

Goals

@ Analyze stability of linear time delay systems [1].
Robust stability analysis [2].

o

@ Robust controller designs [3].
@ Optimal controller designs [4].
@ Mixed H,/H., controllers [4].

Related publications

1 L. Orihuela, P. Millan, C. Vivas and F.R. Rubio, " Robust stability of nonlinear networked control systems with
interval time-varying delay”. International Journal of Robust and Nonlinear Control.

2 P.Millan, L. Orihuela, C. Vivas and F.R. Rubio. "Improved delay-dependent stability for uncertain networked
control systems with induced time-varying delays”. 1st IFAC Workshop on Estimation and Control of
Networked Systems, 2009.

3 J. Arriaga, P. Millan, I. Jurado, C. Vivas, F.R. Rubio, "Application of Network-based Robust Control to a
Personal Pendulum Vehicle”, European Control Conference ECC 2009

4 P. Millan, Luis Orihuela, C. Vivas and F.R. Rubio, "An optimal control L,-gain disturbance rejection design for
networked control systems”. ACC 2009.
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Objectives

Non reliable communication

@ Sampling.
@ Randomly time-varying delays.

@ Packages dropouts.

@ Other: quantization, energy aware, etc.
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Posible consequences
@ Degradation of the control performance
@ "Expensive” control

@ Unstable behaviours &
e
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NCS Model

Modelling Networked Control Systems (NCSs) as Time Delay Systems (TDSs)

We work with Linear Time Invariant Systems (LTI) with differentiated
uncertainties, disturbances and non-ideal networked links in
sensor-to-controller and controller-to-actuator paths

% Plant a3
L

x(t) = Ax(t) + Bu(t) + Bow(r),
z(1) = Cx(t) + Du(z),

= uc X:
ez
X,
@ Sensor nodes sample data in a R i
. \ 2! t

| Network |

time-driven manner at time instants W jeah
t = juh such that ] IR T
{j1,j2,j3, ..} € {1,2,3,...} and — 1
Jk < Jk+1- —
@ 1 € [, i) time intervals with " AN s N
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Univ. Sevilla Lyapunov-Krasovskii functionals for the study of stability and stabilisation of time-delay systems with applice



NCS Model

SYSTEM UNCERTAINTIES

Parametric uncertainties Polytopic uncertainties

[A,B] — [A* + AA(z), B* + AB(1)] Q=[A B]/Q€com{Q,j=1,..,N},
AA(1) = GiF\(1E, o =0 BOLo=32 ¥, £,
AB(t) = GyF(1)E, 0<fi<L XX f=1

Close loop NCS model (u = Kx )

x(r) = Ax(r) + BKx(t — 7(¢)) + Bow(t), Vi€ [tg, trt1),
2(f) = Cx(t) + DKx(t — 7(1)), V1t € [tk, tet1),
x(1) = ¢(1), 1€ lto—7m, 0],

where 7(1) =t — ty + Tse (k) + Tea(k)

(1)

Sampling period &, Round-Trip delay 7&r
and consecutive package losses N,
bounded imply that 7(7) is bounded:

1K)+, (k) Tor < 7(1) < Tar + (h+ DN,

Univ. Sevilla Lyapunov-Krasovskii functionals for the study of stability and stabilisation of time-delay systems with applice



General procedure
General procedure

@ ( Set of network parameters: 7y, 7, Np, h

® £7(1) = ¥ (1),x" (¢ — 7(1)), ..

@ V(z,¢) Candidate to be a Lyapunov-Krasovskii functional
e J= ftgo[fT(t)q)(K)f(t)]dt Cost function.

LINEAR MATRIX INEQUALITIES FOR DIFFERENT CONTROL PROBLEMS

System stability
%V(t? C) = GT(I)E(K’ C)E(I)v E(K7 C) <0

Constraint on the system L, gain

GV (6,0) = F(DZe(t) + 2" (1)2(r) — P (Nw(1), E(K,C) <0

Optimal control

min «,
K
subjectto  aZE(K,() < —®(K)
a > 0, aeR

Univ. Sevilla Lyapunov-Krasovskii functionals for the study of stability and stabilisation of time-delay systems with applice



General procedure

Technical arguments

@ Schur complement
@ S-procedure
© Finsler’s lemma

@ Leibnitz-Newton equation
@ Jensen’s inequality

@ Moon’s inequality

@ Slack matrices

@ Polytopic descriptions

@ Cone complementary algorithm

Control problems can be written in terms of Linear Matrix Inequalities )
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Example of application

Application of the LK Approach to design H,/H., controllers

Forces equilibrium:

Fi(t) = Fa,i(t) — Fyi(1) = mia; (1),
Aerodynamical drag: Fu (1) = §caA7 pairev* (1),
Rolling friction: F,.(1) = ¢,mgcos(a(r)).

Parameters

i=1,2.

@ ¢, ¢,: aerodynamic and tire-road drag
coefficients, respectively.

A7: vehicle’s aerodynamic cross-section.
Pair: air density.

m: vehicle mass.

g: gravity constant.

«(t): road slope angle.

Univ. Sevilla

Vehicle tracking system:

e(t) = p1(t) — p2(t) — I,
é(t) = vi(t) = va(t) = y(1),
¥(1) = a1 (1) — ax(1).

System’s linearization

d

dt

J e
e(n)
y(1)

Control Law:

Fy(1) =K <

0 1 0
= 0o 0 1
0 0 —cpc

0
) Fy(t) + < 0
3

Je(t=7(0)
e(t — 7(1))
y(t = (1)

Je(
e(r)
y(1)

>F1(f)
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Example of application

Local and Networked Control
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Example of application

Response with network effects for various disturbance attenuation levels

Networked optimal L-gain
controller with free y
Networked optimal L-gain
2 controller with y<1.8
Networked optimal L-gain
controller with v<0.8
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Example of application

Trading off performance vs. co
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Summary

Conclusions

Conclusions

@ Closing control loops over communication networks requires the
participation of new analysis and design techniques.

@ The LK approach makes possible the design of controller considering
different specification.

@ The problems are solved using LMI.

@ Simulation examples shows the good performance of the controllers
designed with this approach.
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Summary

Thank you for your attention.
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