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Introduction Stochastic Approximation Consensus Algorithm

1 Objective: To design a distributed state estimation algorithm for hidden = \We consider the following average consensus algorithm proposed by

Markov models using average consensus schemes. Olfati-Saber and Shamma (2005) : w, =w,_, + p(AW, , +Tz, )

] Motivation: Scalability with the size of the network, energy efficiency in where the matrices are defined A =—-1+D+L) I'=I+A

terms of message exchange, robustness, and efficiency in computation. A is the adjacency matrix, and L is the Laplacian matrix of the graph.
= \We define the error n, = w, —w, with the following dynamics

Centralized Dlstrlbuted ., =n,+p0m,.z,.,.2,)

= |n this paper, we show that asymptotically n, converges P—a.s. to a small

neighbourhood of the origin.
= \We use ODE technique in stochastic approximation.
= First, we need to show stochastic stability of m, using perturbed stochastic

Lyapunov function.
= Define the mean ODE #.(r)=Q(n.)  0.(0)=n, , where
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[ Contribution: Convergence analysis of a dynamic average consensus " For an irreducible and aperiodic Markov chain with absolutely positive
algorithm used in a distributed HMM filter densities, there exists s finite Q(n.) .
Distributed Filtering Model Sketch of the proof
= Markov process 1X, |, with state space S observed by n sensors There exists a perturbed stochastic Lyapunov
with observation densities  P(y/ € dy|X, = )— £ (! Jolay) function which has supermartingale property

 Centralized filter v, =[v, (0], v,()=P{x, =y} ¥, ), where j
The error n, visits some compact set infinitely

(O =TT1s" 0 )L, x,v. (i) and by taking log we have :
m=1 i=1 ) often P—w.p.1
= log, () =—nw, (€)+log2xka D W= ~logs(y7) |
(= Using the ODE method, it is shown that
= Each node ; can compute an approximation y./(¢) to the average asymptotically M« starting at the recurrence times
quantity i, (¢) using a dynamic average consensus algorithm by when M, enters the compact set converges to the
exchanging appropriate messages only with its neighboring nodes. largest bounded invariant set contained in the

compact set. The mean ODE needs to be globally
asymptotically stable.

= Distributed filter at node ; for the state value ¢se §
B (0) = exp(=n/(£)) 2 x, %], (i)

Z, = [— log f// (y ..

Simulation Results
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» |tis clear that only for a complete graph W} (¢)=w, (¢). For other topologies,
without the knowledge of all the sensors’ measurements and distribution

models at every node, each node may only be able to find an approximation
to the centralized filter. This paper is a step towards answering this question: e s i s s
= Question : How close is the distributed filter to the centralized one? Time (9
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Convergence in mean of the distributed
state estimate to the centralized one
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