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Overview

The cell is a noisy cell, in spite over being  packed 
full of feedback loops.

Why?
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Fundamental limits on the suppression of
molecular fluctuations
Ioannis Lestas1, Glenn Vinnicombe1 & Johan Paulsson2

Negative feedback is common in biological processes and can increase a system’s stability to internal and external
perturbations. But at themolecular level, control loops always involve signalling steps with finite rates for random births and
deaths of individual molecules. Here we show, by developing mathematical tools that merge control and information theory
with physical chemistry, that seemingly mild constraints on these rates place severe limits on the ability to suppress
molecular fluctuations. Specifically, the minimum standard deviation in abundances decreases with the quartic root of the
number of signalling events, making it extremely expensive to increase accuracy. Our results are formulated in terms of
experimental observables, and existing data show that cells use brute forcewhen noise suppression is essential; for example,
regulatory genes are transcribed tens of thousands of times per cell cycle. The theory challenges conventional beliefs about
biochemical accuracy and presents an approach to the rigorous analysis of poorly characterized biological systems.

Life in the cell is a complex battle between randomizing and correcting
statistical forces: births and deaths of individual molecules create
spontaneous fluctuations in abundances1–4—noise—and many con-
trol circuits have evolved to eliminate, tolerate or exploit the noise5–8.
The net outcome is difficult to predict because each control circuit in
turn consists of probabilistic chemical reactions. For example, nega-
tive feedback loops can compensate for changes in abundances by
adjusting the rates of synthesis or degradation7, but such adjustments
are only certain to suppress noise if the individual deviations imme-
diately and surely affect the rates5. Even the simplest transcriptional
autorepression, by contrast, involves gene activation, transcription
and translation, introducing intermediate probabilistic events that
can randomize or destabilize control. Negative feedback may thus
either suppress or amplify fluctuations depending on the exact
mechanisms, reaction steps andparameters9—details that are difficult
to characterize at the single-cell level and that differ greatly from
system to system. This raises the fundamental questions of to what
extent biological noise is inevitable and to what extent it can be con-
trolled. Perhaps evolution could simply favour networks—however
elaborate or ingeniously designed—that enable cells to homeostati-
cally suppress any disadvantageous noise, or maybe the nature of the
mechanisms imposes inherent constraints that cannot be overcome.

Control is limited by information loss

To address this issue without oversimplifying or guessing at the com-
plexity of cells, we consider a chemical species, X1, that affects the
production of a second species, X2, which in turn indirectly controls
the production of X1 through an arbitrarily complicated reaction
network with any number of components, nonlinear reaction rates
or spatial effects (Fig. 1). For generality, we only specify three of the
chemical events of the larger network:

x1 !?
u(x2({?,t))

x1z1

x1 !?
x1=t1

x1{1

x2 !?
f (x1)

x2z1

ð1Þ

Here x1 and x2 are respectively thenumbers ofX1 andX2molecules per
cell, the birth and death rates are probabilistic reaction intensities,t1 is
the average lifetime of X1 molecules, f is a specified rate function and
the unspecified control network allows the birth rate, u, to be dyna-
mically and arbitrarily set by the full time history of X2 values. Death
events for X2 are omitted because the results we derive rigorously hold
for all types and rates of X2 degradation mechanisms, as long as they
do not depend on X1. The generality of u and f allows X1 to represent
many different biological species: a messenger RNA with X2 as the
corresponding protein, a protein with X2 as either its own mRNA or
anmRNAdownstream in the control pathway, an enzymewithX2 as a
product or a self-replicating DNA with X2 as a replication control
molecule.

1Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK. 2Department of Systems Biology, Harvard University, Boston, Massachusetts 02115, USA.
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Figure 1 | Schematic of optimal control networks and information loss.
Biological networks can be overwhelmingly complex, with numerous
feedback loops and signalling steps. Predictions about noise then rely on
quantitative estimates for how every probabilistic reaction rate responds to
every type of perturbation. To investigate bounds on behaviour, most of the
network is here replaced by a ‘control demon’ representing a controller that
is optimized over all possible network topologies, rates and mechanisms.
The bounds are then calculated in terms of the few specified features.
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REVIEWS

Functional roles for noise in genetic circuits
Avigdor Eldar1{ & Michael B. Elowitz1

The genetic circuits that regulate cellular functions are subject to stochastic fluctuations, or ‘noise’, in the levels of their
components. Noise, far from just a nuisance, has begun to be appreciated for its essential role in key cellular activities. Noise
functions in both microbial and eukaryotic cells, in multicellular development, and in evolution. It enables coordination of
gene expression across large regulons, aswell as probabilistic differentiation strategies that function across cell populations.
At the longest timescales, noise may facilitate evolutionary transitions. Here we review examples and emerging principles
that connect noise, the architecture of the gene circuits in which it is present, and the biological functions it enables. We
further indicate some of the important challenges and opportunities going forward.

C
ircuits of interacting genes and proteins implement the
regulation and differentiation programs that are the basis
of life. Over the past decade, experimental studies have
established that many of these circuits’ most critical

molecular components show substantial, unavoidable stochastic
fluctuations, or noise, in their levels and activities. As a result, even
genetically identical cells in a homogeneous environment can behave
quite differently fromone another. As an impediment to the design of
deterministic circuits, noise is a nuisance. But a newwave of studies is
showing how noise can, and does, provide critical functions that
would be difficult or impossible to achieve by (hypothetical) deter-
ministic gene circuits.

Although the potential importance of noise for biological function
was appreciated many decades ago, the development of single-cell-
analysis methods in the past decade allowed the direct observation of
noise in diverse organisms. Recent reviews on noise in gene circuits
have focused on the sources of noise in gene expression and its
mathematical representation1,2, on ways to analyse noise in the con-
text of dynamic circuits3, and on the advantages of phenotypic vari-
ability4,5. Here we will focus on the types of dynamic behaviours that
noise enables and the functional roles they have in the cell. These
issues can be analysed at three distinct levels. First, noise can enable
certain useful physiological regulation mechanisms, such as coordi-
nating the expression of a large set of genes. Second, at the population
level, noise permits a wide range of probabilistic differentiation strat-
egies from microbial to multicellular organisms. Third, noise can
facilitate evolutionary adaptation and developmental evolution.
We will first briefly review recent work that has characterized the
types and timescales of fluctuations, particularly with respect to gene
expression, and then address the functional roles of noise at each of
these three levels.

Gene expression noise
Many biochemical processes in the cell involve lowmolecule numbers
or infrequent interactions and therefore give rise to stochastic fluctua-
tions. Such effects have a critical role in diverse processes including
cytoskeletal dynamics, cell polarization, signal transduction and
neural activity. However, gene expression is undoubtedly the best
studied example as it is both central to almost all cellular functions
and, owing to the low copy number (1–2 per cell) of most genes,
especially susceptible to noise1–3 (Fig. 1a–d). In fact, molecular noise
is unavoidable.New theoreticalworkhas provided fundamental limits

to how well any feedback system can perform in reducing noise, and
has shown that even an optimal noise-reducing feedback circuit
reduces noise only with the fourth root of the number of control
molecules6.

Gene expression noise can be characterized by the distribution of
protein levels in individual cells and by the timescale of fluctuations,
that is, the time over which a cell remains at a given position in the
distribution (correlation time). Recent experimental and theoretical
work has converged on a simple framework to understand gene
expression noise7–10 (Fig. 1e). This framework is based on three key
concepts.

The first concept is that of bursts. Proteins do not trickle out at a
uniform rate, but rather are produced in stochastic bursts. This is
both because each individual messenger RNA is typically translated
many times to produce many proteins and also because the gene’s
promoter can stochastically switch between long-lived ‘off’ and ‘on’
states, resulting in bursts of mRNA production amplified to generate
corresponding protein bursts. Whereas the mean level of expression
is set by the product of promoter activity, transcription, and trans-
lation, noise depends predominantly on the first two of these pro-
cesses, which work at lower molecule numbers. Examples of bursting
exist in a variety of systems, including bacteria11–14, yeast15,16, mam-
malian cells17 and developing embryos18.

The second is time averaging. When the protein lifetime is longer
than the interval between protein production bursts (as it often is),
the accumulation of proteins over time tends to average out the
variability generated by bursty expression, effectively buffering the
protein concentration.

The third is propagation. Rates of gene expression are influenced
directly by the levels and states of transcription factors and other
upstream components that are themselves subject to bursting and
time averaging. As a result, fluctuations in the expression of one gene
propagate to generate fluctuations in downstream genes. In fact, this
effect can be used to infer active regulatory interactions19,20. In bac-
teria, slowupstream fluctuations in rates of gene expression give rise to
an effective cellular ‘memory’ over cell-cycle timescales21.Mammalian
cells show similar behaviour for some genes, although others fluctuate
more rapidly22.

A simple way to visualize and quantify the relative importance of
noise-generating bursts (intrinsic noise) versus noise propagation
(extrinsic noise) is to analyse the expression of two distinguishable,
but identically regulated fluorescent protein reporters in the same cell
(Fig. 1a)23–25. Uncorrelated fluctuations result from bursting and

1Howard Hughes Medical Institute, Caltech M/C 114-96, 1200 East California Boulevard, Pasadena, California 91125, USA. {Present address: Department of Molecular Microbiology
and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel.
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Overview

The cell is a noisy cell, in spite over being  packed 
full of feedback loops.

Why?

I shall present some fundamental limitations for 
biological systems, in terms of minimum achievable 
variances.

These limits apply to the regulation of a single 
species within an arbitrarily complex network, and 
the suggest that the cost of reducing noise can be 
extremely high. 
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Negative feedback is common in biological processes and can increase a system’s stability to internal and external
perturbations. But at themolecular level, control loops always involve signalling steps with finite rates for random births and
deaths of individual molecules. Here we show, by developing mathematical tools that merge control and information theory
with physical chemistry, that seemingly mild constraints on these rates place severe limits on the ability to suppress
molecular fluctuations. Specifically, the minimum standard deviation in abundances decreases with the quartic root of the
number of signalling events, making it extremely expensive to increase accuracy. Our results are formulated in terms of
experimental observables, and existing data show that cells use brute forcewhen noise suppression is essential; for example,
regulatory genes are transcribed tens of thousands of times per cell cycle. The theory challenges conventional beliefs about
biochemical accuracy and presents an approach to the rigorous analysis of poorly characterized biological systems.

Life in the cell is a complex battle between randomizing and correcting
statistical forces: births and deaths of individual molecules create
spontaneous fluctuations in abundances1–4—noise—and many con-
trol circuits have evolved to eliminate, tolerate or exploit the noise5–8.
The net outcome is difficult to predict because each control circuit in
turn consists of probabilistic chemical reactions. For example, nega-
tive feedback loops can compensate for changes in abundances by
adjusting the rates of synthesis or degradation7, but such adjustments
are only certain to suppress noise if the individual deviations imme-
diately and surely affect the rates5. Even the simplest transcriptional
autorepression, by contrast, involves gene activation, transcription
and translation, introducing intermediate probabilistic events that
can randomize or destabilize control. Negative feedback may thus
either suppress or amplify fluctuations depending on the exact
mechanisms, reaction steps andparameters9—details that are difficult
to characterize at the single-cell level and that differ greatly from
system to system. This raises the fundamental questions of to what
extent biological noise is inevitable and to what extent it can be con-
trolled. Perhaps evolution could simply favour networks—however
elaborate or ingeniously designed—that enable cells to homeostati-
cally suppress any disadvantageous noise, or maybe the nature of the
mechanisms imposes inherent constraints that cannot be overcome.

Control is limited by information loss

To address this issue without oversimplifying or guessing at the com-
plexity of cells, we consider a chemical species, X1, that affects the
production of a second species, X2, which in turn indirectly controls
the production of X1 through an arbitrarily complicated reaction
network with any number of components, nonlinear reaction rates
or spatial effects (Fig. 1). For generality, we only specify three of the
chemical events of the larger network:
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Here x1 and x2 are respectively thenumbers ofX1 andX2molecules per
cell, the birth and death rates are probabilistic reaction intensities,t1 is
the average lifetime of X1 molecules, f is a specified rate function and
the unspecified control network allows the birth rate, u, to be dyna-
mically and arbitrarily set by the full time history of X2 values. Death
events for X2 are omitted because the results we derive rigorously hold
for all types and rates of X2 degradation mechanisms, as long as they
do not depend on X1. The generality of u and f allows X1 to represent
many different biological species: a messenger RNA with X2 as the
corresponding protein, a protein with X2 as either its own mRNA or
anmRNAdownstream in the control pathway, an enzymewithX2 as a
product or a self-replicating DNA with X2 as a replication control
molecule.

1Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK. 2Department of Systems Biology, Harvard University, Boston, Massachusetts 02115, USA.

P

Gene

mRNA

Protein

... and so on

Figure 1 | Schematic of optimal control networks and information loss.
Biological networks can be overwhelmingly complex, with numerous
feedback loops and signalling steps. Predictions about noise then rely on
quantitative estimates for how every probabilistic reaction rate responds to
every type of perturbation. To investigate bounds on behaviour, most of the
network is here replaced by a ‘control demon’ representing a controller that
is optimized over all possible network topologies, rates and mechanisms.
The bounds are then calculated in terms of the few specified features.
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Minimizing variance: ColE1 replication control

 Approx 16 plasmid copies per cell
 Partitioned randomly at cell division
 Under strong selection for small variance
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Regulation of molecule numbers

Consider a single species: e.g. mRNA of a constitutively expressed gene
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Regulation of molecule numbers

(with feedback)
x1

ut
!! x1 + 1

x1

x1/τ1
!! x1 − 1

where ut = f
(

{x1(t′) : t′ < t}
)

Can make
σ 2

1

〈x1〉
arbitrarily small by appropriate choice of f .

However, limitations are imposed by:

Delays

Feedback mechanisms/capacity
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Limitations due to delay
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Number of molecules per lifetime of n.

 

Limitations due to mechanisms: molecular channels

System:
x1

ut
!! x1 + 1

x1

x1/τ1
!! x1 − 1

Sensor:
x2

αx1
!! x2 + 1

x2

x2/τ2
!! x2 − 1

where ut = f
(

{x2(t′) : t′ < t}
)

σ 2
n

〈n〉
≥ 2

√

〈n〉

N2

}

where N2 = 〈m〉τN/τM .

X1 X2

Monday, 13 September 2010



What is the capacity of a molecular channel?

Consider the channel:
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Feedback capacity and variance

Taking the diffusion approximation of the replication case:

x1

utx1
!! x1 + 1

x1

x1/τ1
!! x1 − 1

dx1 = ut〈x1〉dt +
√

2〈x1〉/τ1 dw

gives ( Gorbunov and Pinsker ’74)

σ 2
1

〈x1〉
≥

1

Cτ1

Putting this together with the bound on C gives:

σ 2
1

〈x1〉
≥

√

N1

N2

where N2 = 〈x2〉τ1/τ2 = no of molecules of X2 made per lifetime of X1.
N1 = 〈x1〉 = no of molecules of X1 made per lifetime of X1.

(for I(u;x1) ≤ C)
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dx1 = ut〈x1〉dt +
√

2〈x1〉/τ1 dw

Summary: Limitations due to channel capacity

System:
x1

utx1
!! x1 + 1

x1

x1/τ1
!! x1 − 1

Sensor:
x2

αx1
!! x2 + 1

x2

x2/τ2
!! x2 − 1

where ut = f
(

{x2(t′) : t′ < t}
)

σ 2
1

〈x1〉
≥

√

N1

N2

where N2 = 〈x2〉τ1/τ2 = no of molecules of X2 made per lifetime of X1.
N1 = 〈x1〉 = no of molecules of X1 made per lifetime of X1.

Summary: Limitations due to channel capacity
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Summary: Limitations due to delay

x1
utx1

!! x1 + 1

x1

x1/τ1
!! x1 − 1

where ut = f
(

{x1(t′) : t′ < t − T}
)

If x1 is a stationary process then

σ 2
1

〈x1〉
≥ 2

T

τ1

Monday, 13 September 2010



Summary: Limitations due to delay

x1
utx1

!! x1 + 1

x1

x1/τ1
!! x1 − 1

where ut = f
(

{x1(t′) : t′ < t − T}
)

If x1 is a stationary process then

σ 2
1

〈x1〉
≥ 2

T

τ1

Can combine bounds:

σ2
1

〈x1〉
≥ T

τ1
+

√
N1

N2
+

(
T

τ1

)2
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Some numbers

For ColE1, assuming a mean of 16 copies immediately after cell division

Lower bound due to delays only (T = 44): σ 2 ! 1

1000 inhibitors/cell cycle: σ 2 ! 2

Linear noise approximation, with exponential inhibition, predicts
σ 2 ≈ 6.

Early experimental results (Paulsson) suggest σ 2 < 4 (although for
a different plasmid with the same copy number).
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0!--212"32/& 12D5!12/& %,"4)#21*& 3,*.2#!#!,"& 2+.21!*2"#/8& E6!36& $12&*$02& 3,*.%!3$#20& :9&*5#$#!,"B&F2& $12&
35112"#%9&02G2%,.!"4&#236"!D52/&#,&/,%G2&#6,/2&.1,:%2*/&;/22&H2/2$136&C2/!4"&$"0&I2#6,0/?B&&

&

!! !

Figure 4. Experimental results. (Left)& F2& *2$/5120& .%$/*!0& 3,.9& "5*:21/& !"& !"0!G!05$%& 32%%/& !"& $"&
$/9"361,",5/%9&41,E!"4&.,.5%$#!,"&;JK&<L(M?B&(Right) N62&3,.9&"5*:21/&!"&#62&!"0!G!05$%&32%%/&3,112%$#20&E!#6&#62&
2/#!*$#20& 32%%& G,%5*28& $/& *2$/5120& :9& #62& $/.23#& 1$#!,& ;%2"4#6& ,G21& E!0#6& ,-& #62& 1,0)/6$.20& 32%%/?B& N6,546& #62&
.%$/*!0&3,5"#!"4& !/&G219&$3351$#2&;!"/!4"!-!3$"#&211,1/&$%,"4&9)$+!/?8& #62&$/.23#&1$#!,&E$/&,"%9&1,546%9&2/#!*$#20& !"&
%!D5!0&*!31,36$*:21/&;%$142&211,1/&$%,"4&+)$+!/?B&N62&0$#$&#6212-,12&,"%9&4!G2/&%,E21&:,5"0/&,"&#62&3,112%$#!,"B&F2&
$12&35112"#%9&!*.1,G!"4&#62&$3351$39&:9&*2$/51!"4&#62&G,%5*2/&5/!"4&#62&*!31,3,%,"9&$//$9&!"&O!4B&PB&

C3. Experimental results for gene expression 

C3.1 The RpoS-SprE feedback loop @/& /6,E"& !"& #62& #62,19& /23#!,"8& #62& D5$%!#9& ,-& !"0!123#& "24$#!G2&
-220:$3Q& /#1,"4%9& 02.2"0/& ,"& #62& /9"#62/!/& $"0& 0241$0$#!,"& 1$#2/& ,-& #62& /!4"$%& *,%235%2/B& R51& 3%,/2&
3,%%$:,1$#,1/&S1,-&N6,*$/&T!%6$G9&$"0&C1&J2%2/#2&S2#21/,"&*2$/5120&#62&6$%-)%!G2/&,-&/!4*$&-$3#,1&H.,T&$"0&
!#/& "24$#!G2& -220:$3Q& 3,"#1,%%21& T.1U& !"& 2+.,"2"#!$%%9& 41,E!"4& 32%%/8& :9& /#,..!"4& .1,#2!"& /9"#62/!/& E!#6&
36%,1$*.62"!3,%&$"0&*,"!#,1!"4&.1,#2!"& %2G2%/&:9&F2/#21"&:%,#/B&N62&H.,T&6$%-)%!-2&E$/&$1,5"0&,"2&*!"5#2&
E6!%2&T.1U&6$0&$&6$%-)%!-2&,-&,G21&#E2"#9&*!"5#2/8&!"#1,053!"4&$&%,"4&12%$#!G2&%$4&!"&#62&-220:$3Q&12/.,"/2B&N62&
H.,T& %2G2%/& E212& G219& %,E8& $"0& T.1U& %2G2%/& E212& $%*,/#& 5"02#23#$:%2B& T2G21$%& ,-& #62& 42"2#!3& 3,"/#153#/& -,1&
3,*.$1!"4&3%,/20)&G/&,.2")%,,.&3$/2/&$"0&*2$/51!"4&%2G2%/&5/!"4&G$1!,5/&VOS&-5/!,"/&6$G2&$%12$09&:22"&:5!%#B&

C3.2 Other related work F2&6$G2&:22"&!"G,%G20&!"&#E,&1232"#%9&.5:%!/620&2+.21!*2"#$%&3,%%$:,1$#!,"/&,"&
/!"4%2&32%%&-%53#5$#!,"&*2$/512*2"#/W&#62&02G2%,.*2"#&,-&$&"2E&*2#6,0&-,1&3,5"#!"4&HX@&E!#6&/!"4%2)*,%235%2&
12/,%5#!,"&!"&12$%&#!*28&E!#6&S1,-/&Y0,&V,%0!"4&$"0&U0E$10&J,+Z8&$"0&$&6!46)#61,546.5#&$"$%9/!/&,-&/#,36$/#!3&
42"2&2+.12//!,"&E!#6&S1,-/&X$$*$&[$1Q$!&$"0&\!#]6$Q&S!%.2%'=B&Y"&6!/&#62/!/&E,1Q&!"&#62&G$"&R502"$$102"&%$:8&
.,/#0,3#,1$%&-2%%,E&^5$"&S201$]$&$%/,&02G2%,.20&2+.21!*2"#$%&#236"!D52/&#,&/2.$1$#2&-%53#5$#!,"/&,1!4!"$#!"4&
-1,*&0!--212"#&/#2./&!"&E. coli 42"2&2+.12//!,"P_8'7B&@%%&#62/2&12/5%#/&$12&0!123#%9&12%2G$"#&#,&#62&.1,.,/$%&$"0&E2&
E!%%&:1!2-%9&12#51"&#,&#62*&!"&H2/2$136&C2/!4"&$"0&I2#6,0/B&&

C4. Comparing loops with different characteristics  

N62&.12%!*!"$19&$"$%9/!/&/5442/#/&#6$#8&$%#6,546&.%$/*!0/&$"0&H.,T&5/2&#,.,%,4!3$%%9&/!*!%$1&-220:$3Q&%,,./8&
#6212& $12& 412$#& 0!--212"32/& :2#E22"& #62*B& [23$5/2& .%$/*!0/& /2%-)12.%!3$#28& -%53#5$#!,"/& E,5%0& :2& 2+#12*2&
E!#6,5#&3,"#1,%8&$"0&$12&6$10& #,&120532&5"%2//& #62& !"6!:!#,1/&$12&*$02&$#&6!46&1$#2/&$"0&02%$9/&$12&$G,!020B&
H.,T& /9"#62/!/& !/& ",#& $5#,3$#$%9#!38& $"0& #6212-,12& 0,2/& ",#& "232//$1!%9& "220& "24$#!G2& -220:$3Q& #,& 120532&
-%53#5$#!,"/B&N62&.$1$*2#21/&$12&$%/,&G219&0!--212"#B&I$"9&.%$/*!0&!"6!:!#,1/&$12&2+.12//20&-1,*&/,*2&,-&#62&
/#1,"42/#&.1,*,#21/&Q",E"&!"&:!,%,49'P)''8&$"0&#62!1& %!-2#!*2/&$12&,-#2"&=)7&,1021/&,-&*$4"!#502&/6,1#21&#6$"&
#62& 32%%& 42"21$#!,"& #!*2B&T.1U& !/& !"/#2$0& 2+.12//20& $#& G219& %,E& %2G2%/&`& %,E21& 2G2"& #6$"&H.,T&`&$"0&6$/& $"&
,1021&,-&*$4"!#502&longer&$G21$42&%!-2#!*2B&N6,/2&$12&#62&E,1/#&3,"0!#!,"/&!*$4!"$:%2&-,1&",!/2&/5..12//!,"8&
$"0&/6,5%0&$*.%!-9&*,/#&-%53#5$#!,"/B&S%$/*!0/&$"0&T.1U&6$G2&#65/&2G,%G20&2+#12*2%9&0!--212"#&.$1$*2#21/B&
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σ 2 ≈ 6.

Early experimental results (Paulsson) suggest σ 2 < 4 (although for
a different plasmid with the same copy number).
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Extensions

Similar results hold for non-replication case (e.g. 
transcription/translation:

x1
ut→ x1 + 1

x2
f(x1)→ x2 + 1

and for nonlinear use of channel:

(e.g. Hill functions                             )f(x1) = v
xH

1

K + xH
1

e.g.

same bounds, but with N2 → γN2max

σ2
1

〈x1〉
≥ 2

1 +
√

1 + 4N2/N1

, 1− exp(−2T/τ1)
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Some numbers

For ColE1, assuming a mean of 16 copies immediately after cell division

Lower bound due to delays only (T = 44): σ 2 ! 1

1000 inhibitors/cell cycle: σ 2 ! 2

Early experimental results (Paulsson) suggest σ 2 < 4 (although for
a different plasmid with the same copy number).

Conclusions

The ultimate bounds on feedback performance due to delays and
finite numbers of synthesis events are sharp and appear
biologically relevant.

Biological questions are inspiring new theory here!
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Lower bound due to delays only (T = 44): σ 2 ! 1
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The ultimate bounds on feedback performance due to delays and
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biologically relevant.

Biological questions are inspiring new theory here!

and new theory is now also inspiring biological questions!
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