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Overview

® The cell is a noisy cell, in spite over being packed
full of feedback loops.

® Why!?
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Overview

® The cell is a noisy cell, in spite over being packed
full of feedback loops.

® Why!

® | shall present some fundamental limitations for
biological systems, in terms of minimum achievable
variances.

® These limits apply to the regulation of a single
species within an arbitrarily complex network, and
the suggest that the cost of reducing noise can be
extremely high.
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except that U is substituted

3. The BRNA is synthesized in a
for T in the RNA.

5’ to 3' direction using
ribonuclecside triphosphates

as precursors, Pyrophosphate

2. The DNA strand known as the
is released (not shown).

template strand is used to make
a complementary copy of RNA

1. BNA polymerase slides
as an RNA-DNA hybrid.

along the DNA, creating an
open complex as it moves.
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Transcription & Translation in Prokaryotes
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Regulation of gene expression
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Regulation of gene expression

small
molecules

DNA

tl"anSCI’IPtIOI’l - translation

@ Gene silencing
@ Gene regulation by
DNA binding proteins:
¢ Activators/repressors
¢ Sigma factors
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Regulation of gene expression

@ post-transcriptional control
© antisense RNA / RNAI
& temperature sensors
© RNA binding small molecules
& control of splicing ( in eukaryotes)

transcription translation small
DNA - -- T -)molecules

@ Gene silencing
@ Gene regulation by
DNA binding proteins:
¢ Activators/repressors
¢ Sigma factors
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Regulation of gene expression

@ post-transcriptional control
© antisense RNA / RNAI
& temperature sensors
© RNA binding small molecules
& control of splicing ( in eukaryotes)

transcription translation small
DNA - -- T -)molecules

@ Gene silencing

@ Gene regulation by StLR
DNA binding proteins: modification e.g.

¢ Activators/repressors phosphorylation
¢ Sigma factors

@ post-translational

Monday, 13 September 2010



Regulation of gene expression

@ post-transcriptional control
© antisense RNA / RNAI
& temperature sensors
© RNA binding small molecules
& control of splicing ( in eukaryotes)

v

transcription - translation

small
molecules

DNA

@ Gene silencing

@ Gene regulation by StLR
DNA binding proteins: modification e.g.

@ Activators/repressors phosphorylation
¢ Sigma factors

@ post-translational

Monday, 13 September 2010



Regulation of gene expression

@ post-transcriptional control
L antisense RNA / RNAI
& temperature sensors
© RNA binding small molecules

& control oiplicing Qkaryotes)

transcription - translation

small
molecules

DNA

@ Gene silencing

@ Gene regulation by StLR
DNA binding proteins: modification e.g.

@ Activators/repressors phosphorylation
¢ Sigma factors

@ post-translational

Monday, 13 September 2010



Regulation of gene expression

@ post-transcriptional control
¢ antisense RNA / RNAi
& temperature sensors
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Regulation of gene expression

@ post-transcriptional control
¢ antisense RNA / RNAi
& temperature sensors
© RNA binding small molecules

© control oiplicing Q‘kﬁr)@tes)

transcription - translation

(and this is
just part of
the story!)

small
molecules

DNA

@ Gene silencing
@ Gene regulation by
DNA binding proteins:
¢ Activators/repressors
¢ Sigma factors

@ post-translational

modification e.g.
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Minimizing variance: ColE1 replication control

@ Approx |6 plasmid copies per cell
@ Partitioned randomly at cell division
@ Under strong selection for small variance

Inhibitor

®

o 280

Ty e .°...". —> : - Replication

Medium copy number Varying copy number
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Regulation of molecule numbers

Consider a single species: e.g. mRNA of a constitutively expressed gene

X1 —S x4+ 1 k1
o /T N s X
ko
130
120! open loop |
110} I 2
X1 of = (x1)
100§
90 -
80~ -
70 | | | |
0 1000 2000 3000 4000 5000

time

Monday, 13 September 2010



Regulation of molecule numbers

Consider a single species: e.g. mRNA of a constitutively expressed gene
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Regulation of molecule numbers

Consider a single species: e.g. mRNA of a constitutively expressed gene
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Regulation of molecule numbers

X1$X1+1

X1/T
X1—1/>1 1—1

(with feedback)

where u; = f({x1(t') : t’' < t})

2
® Can make (x ) arbitrarily small by appropriate choice of f.
1
Arbitrarily
o] : 3 CComphcated
.. . . ] PR ontrol System
However, limitations are imposed by:
i e )
® Delays ot
® Feedback mechanisms/capacity oo Fite ¥ Arbitrarly
o —> . _.> Complicated
® @ jievents ¥ Control System
e )
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Limitations due to delay

Arbitrarily
> Complicated
S

Control System

L= Delay T )

X1$X1+1

X1/T

where u; = f({x1(t') :t' <t— T1})

Theorem: If x; is a stationary process then

o? -
(x1) ={1-e

—2T/T1)
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Limitations due to delay

Arbitrarily
(X ] 3 Complicated
% Control System
i 1 )
u Delay T
X1 — b x 1+ 1 =

X1/T
X1 —1/>1X1 —1

where u; = f({x1(t') : t' <t - @}

Theorem: If x; is a stationary process then

o? -
(x1) ={1-e

—2T/T1)

de
/

)

lay
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Limitations due to delay

Arbitrfarily
:o: S e cgcr)\?:;hsc;st;dm
X] —24 xq + 1 = = J
xS 1 delay
/
where u; = f({x1(t') :t' <t — T})

Theorem: If x; is a stationary process then
2

O B
(x1) ={1-e

Proof: Let Z; = {x1(t'), t/' <t —T}

—2T/T1)

0} = El(x1 — E[r1))?] = E[E[z1 — E[z1])?||1]
> E|E[(z1 — Elz1|1:))?| 1]
= E[B[21|T) — @1(t — T)e >"/7]
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Limitations due to delay

X1$X1+1

X1/T
X1 —1/>1X1 —1

Arbitrarily
3 Complicated
Control System
Delay T )

de
/

where u; = f({x1(t') :t' <t — T})

Theorem: If x; is a stationary process then

5
gi > (1 —e

—2T/T1
(xX1) )

lay

On the other hand, if

then

U X
X] —=x71 + 1

X1/T
X1 —1/>1X1 —1

2

9IS o)1y
(x1)
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Limitations due to delay

X1$X1+1

X1/T
X1 1/ 1X1_1

-

—

de
/

where u; = f({x1(t') :t' <t — T})

Theorem: If x; is a stationary process then

2

Delay T

Arbitrarily
Complicated
Control System

)

lay

then

X1/T
X1 —1/>1X1 —1

2

9IS o)1y
(x1)

(?) > (1 — e~ 2T/T1)
1 licati
/rep IcCation
On the other hand, if ﬁ(
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Limitations due to mechanisms: molecular channels

System:

Sensor:

Ui
X1 — X1 + 1

X1/T
X1—1/>1 1—]_

XX1
X9 ——= X9 + 1

Xo /T
X2—2/>2 2—1

X1 Xo

%

® 0 Finite .).:.

‘ é _x ﬁ
® @ ievents *

T

Arbitrarily
Complicated
Control System

where u; = f({xa2(t') : t' < t})

A

— X, sample path, no control

X; average level (100 molecules)

— X, birth train

Time (units of 1)
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What is the capacity of a molecular channel?

A
— X, sample path, no control
X, average level (100 molecules)
— X, birth train
‘ ‘ >
Consider the channel: Time (units of 1)

X2—2>X2-|—1

X2/ T

® Capacity is related to that for a photon counting channel
(but depends on what constraints are put on z)

(nat/s)
= 1.44302/(z) bit/s

(722) o2

® One answeris C = (z)log<1 + (2)2 < I5)

(where C' = max I (x2; 2))
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Feedback capacity and variance

Taking the diffusion approximation of the replication case:

X1 — Xy 11 dx) = u () dt ++/2(x1) /T dw
X1/T1
X1 — X1 — 1

gives ( Gorbunov and Pinsker ’74)

oy > 1 (for I(u;x1) < C)
(x1) CT1

Putting this together with the bound on C gives:

o g INy
(Xx1) Ny

where Ny = (x9)T1/T2 = no of molecules of X5 made per lifetime of Xj.
Ni = {(x1) = no of molecules of X; made per lifetime of Xj.
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Summary: Limitations due to channel capacity

o * Arbitrarily
® @ Finite % % :
e —>» . * ——3p ( Complicated

® @ jHevents Control System

T )
X1 —5 x4+ 1
1 —=
System: LT e e = w(x)d +\20x1) /1 dw

xXX1
X9 ——= X9 + 1
Sensor:
X2 /T2
Xo ——>"X9 — 1

where u; = f({xo(t’) : t’' < t})

o} g [Ny
(x1) No

where Ny = (x9)T1/T2 = no of molecules of X5 made per lifetime of Xj.
N; = {(x1) = no of molecules of X; made per lifetime of Xj.
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Summary: Limitations due to delay

Arbitrarily
(X ] 3 Complicated
% Control System
ULtX
X1 _AtAL X1 + 1 5 Delay T )

X1/T
X1 %/19(1 —1

where u; = f({x1(t') :t' <t —T})

If x1 is a stationary process then

2
9i_ 21
(x1) Ty
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Summary: Limitations due to delay

Arbitrarily

(X ] 3 Complicated
% Control System
ULtX
X1 —24 X1+ 1 .= Delay T )

X1/T
X1 %/19(1 —1

where u; = f({x1(t') :t' <t —T})

If x1 is a stationary process then

Can combine bounds:
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Some numbers

For ColET, assuming a mean of 16 copies immediately after cell division
® Lower bound due to delays only (T = 44): 02 = 1
® 10000 inhibitors/cell cycle: 02 = 2

20

181t

16

14

121

0 2000 4000 N 6000 8000 10000
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Some numbers

For ColET, assuming a mean of 16 copies immediately after cell division

® Lower bound due to delays only (T =44): 022 1°

® 10000 inhibitors/cell cycle: 0% = 2 -

0 2000 4000 N 6000 8000 10000
2

® Early experimental results (Paulsson) suggest 02 < 4 (although for
a different plasmid with the same copy number).

1. Measure volume :: 2. Stop plasmid replication 60
L L J
s ® 0w @
g : S0
15501 ¥ S
]
° ° B o 2
................ .
aXXXX@thXX@XXXX 0 5 10 15 20 25 30 35 40
4. |dentify cells Number of Plasmid Copies
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Extensions

Similar results hold for non-replication case (e.g.
transcription/translation:

u
5131—t>331—|—1

e.g.
2
91 1 — exp(—2T/7)

(1) = 14 /14 4No/Ny’

el \V)

and for nonlinear use of channel:

L9 f(il)232—|—1

H
L7

UK%—x{{ )

(e.g. Hill functions  f(z1) =

same bounds, but with No — v Nomax
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Conclusions

® The ultimate bounds on feedback performance due to delays and

finite numbers of synthesis events are sharp and appear
biologically relevant.

® Biological questions are inspiring new theory here!
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Conclusions

® The ultimate bounds on feedback performance due to delays and

finite numbers of synthesis events are sharp and appear
biologically relevant.

® Biological questions are inspiring new theory here!

@ and new theory is now also inspiring biological questions!
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