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Introduction

We compare consensus-based distributed filters for multiple

range-only sensors tracking vehicles moving with nonlinear dy-

namics. The filters are:

1. MCDPF: Markov Chain Distributed Particle Filter [LW09].

2. DEKF: Distributed Extended Kalman Filter [OSS05]: EKF

written in information filter form with consensus on the in-

formation matrices and vectors.

3. RDEKF: Regularized Distributed Extended Kalman Filter:

same as DEKF but with the condition number of the in-

formation matrix constrained within [1, 106].

System Model

Assume a nonlinear system with additive Gaussian noise:

xt+1 = f (xt) + qt

zt = h(xt) + rt

where xt ∈ Rn, zt ∈ Rp, and wt ∼ N (0, Qt), rt ∼ N (0, Rt)

are process and measurement noises respectively. State esti-

mates are

x̂t|t−1 = E(xt|z1:t−1), x̂t|t = E(xt|z1:t)

Particle Filters

Centralized Particle Filter (CPF)

The posterior distribution at time t− 1, πt−1|t−1(dxt−1), ap-

proximated by N particles {xit−1}
N
i=1 is

p(xt−1|z1:t−1) , πt−1|t−1(dxt−1)

≈ πNt−1|t−1(dxt−1) =
1

N

N∑
i=1

δxit−1
(dxt−1)

Prediction step: x̃it ∼
1
N

∑N
i=1K(xt|xit−1) gives

p(xt|z1:t−1) , πt|t−1(dxt) ≈ π̃Nt|t−1(dxt) =
1

N

N∑
i=1

δx̃it
(dx̃t)

Measurement update step: ρ(zt|xt) is the transition prob-

ability density of a measurement zt given the state xt.

π̃Nt|t(dxt) ,
ρ(zt|xt)π̃Nt|t−1

(dxt)∫
Rn ρ(zt|xt)π̃Nt|t−1

(dxt) dxt

=

∑N
i=1 ρ(zt|x̃it)δx̃it(dx̃t)∑N

i=1 ρ(zt|x̃it)
=

N∑
i=1

witδx̃it
(dx̃t)

Resampling step: to avoid degeneracy problems, giving

πNt|t(dxt) =
1

N

N∑
i=1

δxit
(dxt)

Distributed Approach (MCDPF)

Each sensor in a network has a set of particles to approximate

the posterior distribution. Particles hop along network edges

(kmc hops per measurement update). Assuming independent

measurement noises, measurement updates can be applied in-

crementally as each particle passes through a sensor. Prediction

and resampling are done per-sensor.

Theorem 1. Consider a connected sensor network with

measurements at different nodes conditionally independent

given the true state. Then the estimated distribution of the

MCDPF algorithm converges weakly to the estimated dis-

tribution of the CPF as the number of Markov chain steps

kmc per measurement goes to infinity. That is,

lim
kmc→∞

πNt|t,k = πNt|t.

pointwise.

Proof. See [LW09, Section C].

Algorithm 1 Markov Chain Distributed Particle Filter

Initialization: for j = 1 to m do

{xij,0}
N
i=1 ∼ p(x0), {wij,0}

N
i=1 = 1

N

Prediction: for j = 1 to m do

{x̃ij,t}
N(j)
i=1 ∼ p

(
xt|{xij,t−1}

N(j)
i=1

)
, {w̃ij,t}

N(j)
i=1 = 1

Measurement update (Markov chain random walk):

for kmc iterations do

move {x̃i·,t}
N(j)
i=1 , {w̃i·,t}

N(j)
i=1 randomly along edges

for j = 1 to m do

{x̃ij,t}
N(j)
i=1 =

⋃
l∈Nj
{x̃il,t}i∈Il→j

{w̃ij,t}
N(j)
i=1 =

⋃
l∈Nj
{w̃il,t}i∈Il→j

{w̃ij,t}
N(j)
i=1 ← {w̃

i
j,t}

N(j)
i=1 × ρj

(
zj,t|{x̃ij,t}

N(j)
i=1

)2|E(G)|
kd(j)

end for

end for

Resample: for j = 1 to m do

resample {xij,t}
N(j)
i=1 according to {w̃ij,t}

N(j)
i=1

set weights {wij,t}
N(j)
i=1 = 1

N(j)

Performance Comparison

Four fixed sensor stations (black triangles) perform range-only

measurements to vehicles and can each communicate with two

other sensors (black dotted lines). The vehicles move according

to a nonlinear flocking control law [TJP03] that includes global

cooperation and local collision avoidance.
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Figure 1: Estimated states of 4 vehicles with ∆t = 0.1.

Estimator performance is evaluated by comparing the root mean

squared error (RMSE) of the estimated mean. An estimator is

said to diverge if the RMSE is higher than the static estimator

that always returns the initial condition.

Changing sample rate and system size

4 vehicles ∆t = 0.05 ∆t = 0.1

Algorithm RMSE Diverge RMSE Diverge

EKF 0.124 0% N/A 49.7%

DEKF 0.173 0.1% N/A 62.3%

Regularized EKF 0.116 0% 1.20 2.1%

Regularized DEKF 0.158 0% 2.54 2.3%

CPF 0.192 0% 0.287 0%

MCDPF 0.745 0% 0.801 0%

10 vehicles ∆t = 0.05 ∆t = 0.1

Algorithm RMSE Diverge RMSE Diverge

EKF N/A 100% N/A 100%

DEKF N/A 100% N/A 100%

Regularized EKF 1.57 2.9% 1.71 8%

Regularized DEKF 5.83 6.1% 12.7 16.7%

CPF 0.243 0% 0.499 0%

MCDPF 0.481 0% 0.742 0%

The filter parameters were always N = 100 particles for CPF

and MCPDF, kmc = 10 Markov chain iteration steps for MCDPF,

and kcon = 2 consensus iteration steps for (R)DEKF.

Convergence of distributed filters

Information exchange bandwidth (amount of data to be sent

per unit time) at each node:

BWCPF =
1

∆t
N(n + 1)

BWMCDPF =
1

∆t
kmc

(
N

m
(n + 1)

)
for n system dimensions and m sensors.
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Figure 2: Convergence as N →∞ (CPF) and kmc →∞ (MCDPF).

We observe the proven limiting rates of 1/
√

BW for the particle

filters.

Conclusions

For sufficiently small measurement timesteps and sufficiently

small systems dynamics, the Kalman-type filters outperform the

particle filters (in particular, RDEKF beats MCDPF). However,

in all other cases MCDPF beats RDEKF. We summarize this

as:

∆t = 0.05 ∆t = 0.1

4 vehicles RDEKF better MCDPF better

10 vehicles MCDPF better MCDPF better

Additionally, we found that regularization is necessary to obtain

reasonable behavior from Kalman-type filters for this system.
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