Performance Comparison of the Distributed Extended Kalman
Filter and Markov Chain Distributed Particle Filter

We compare consensus-based distributed filters for multiple
range-only sensors tracking vehicles moving with nonlinear dy-

namics. | he filters are:

1. MCDPF: Markov Chain Distributed Particle Filter [LW09].
2. DEKF: Distributed Extended Kalman Filter [OSS05]: EKF

written in information filter form with consensus on the in-

formation matrices and vectors.

3. RDEKF: Regularized Distributed Extended Kalman Filter:

same as DEKF but with the condition number of the in-

formation matrix constrained within [1, 109].

System Model

Assume a nonlinear system with additive Gaussian noise:
Xt 41 = f(Xt) + g
zr = h(x¢) + ¢
where x; € R", z; € RP, and wy ~ N (0, Q¢), r+ ~ N (0, Ry¢)

are process and measurement noises respectively. State esti-

mates are

Xpp—1 = E(X¢tz1:0-1),  Xpp = E(x¢|214)

Centralized Particle Filter (CPF)

The posterior distribution at time ¢ — 1, m;_y);_1(dX¢—1), ap-
proximated by NV particles {Xg_l}ij\il is

p(xt-1]214-1) = 1 (dxi—1)
N

1
~ 7T7£\i1|15_1<dxt—1) N Zl 5X§_1<dxt—1>
1=
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Prediction step: x; ~ & > ;11 K(x¢[x}_ 1) gives

Measurement update step: p(z:|x¢) is the transition prob-

ability density of a measurement z; given the state x;.

. plelxomy,  (dx)

N
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Zz 1,0(Zt| ) dXt
Z 1,0(Zt\ = Z wtéxt (dx¢)
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Resampling step: to avoid degeneracy problems, giving

t| t dXt Z 5Xt dXt

Distributed Approach (MCDPF)

Each sensor in a network has a set of particles to approximate
the posterior distribution. Particles hop along network edges
(ke hops per measurement update). Assuming independent
measurement noises, measurement updates can be applied in-
crementally as each particle passes through a sensor. Prediction

and resampling are done per-sensor.

Theorem 1. Consider a connected sensor network with
measurements at different nodes conditionally independent
given the true state. Then the estimated distribution of the
MCDPF algorithm converges weakly to the estimated dis-
tribution of the CPF as the number of Markov chain steps
kme per measurement goes to infinity. That is,

lim 7TN — v
b R T T

pointwise.

Proof. See [LW09, Section C].
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Algorithm 1 Markov Chain Distributed Particle Filter Changing sample rate and system size
Initialization: for j = 1 to m do
{X] O}z |~ p(xq), {w] O}z | = N 4 vehicles At = 0.05 At = 0.1
Predlctlon for j=1tom do Algorithm RMSE | Diverge RMSE | Diverge

8 0 0
(% t} ~p (th{th 1}Z 1 ) {al y) =1 EKF 0.124 | 0% | N/A | 49.7%

Measurement update (Markov chain random walk): DEKF 0.173 1 0.1%  N/A | 62.3%
for k. iterations do Regularized EKF | 0.116 | 0% 1.20 | 2.1%

move {fcit}iv(ij), {~?t}£(f) randomly along edges Regularized DEKF | 0.158 | 0% | 2.54 @ 2.3%
for j = 1 to m do CPF 0.192 0% 0.287 | 0%

g 0 0
{xi t}“ = Usen {2 Yier, MCDPF 0.745 | 0%  0.801 0%
- Jj)
{w]t}zl

UZEN'{wl t}iEIHJ' B 10 vehicles At = 0.05 At = 0.1
{w } 1 % {w] nS 1) X ( ]t}z 1)) k() Algorithm RMSE Diverge | RMSE | Diverge
end for EKF N/A | 100% | N/A | 100%
end for DEKF N/A | 100% | N/A | 100%
Resample: for j = 1 to m do Regularized EKF | 1.57 | 29% | 1.71 | 8%

resample {ngt}i{(f) according to {w;,t}f\i(f) Regularized DEKF | 5.83 | 6.1% @ 12.7 | 16.7%

) . 0 0
set weights {w; t}@-]\i (f) - CPF 0243 | 0% |0.499 0%
) J MCDPF 0481 0% | 0.742 0%

The filter parameters were always N = 100 particles for CPF
and MCPDF, £, = 10 Markov chain iteration steps for MCDPF,
and kcon = 2 consensus iteration steps for (R)DEKF.

Convergence of distributed filters

Four fixed sensor stations (black triangles) perform range-only _ _
_ _ _ Information exchange bandwidth (amount of data to be sent
measurements to vehicles and can each communicate with two t time) b od
_ _ _ er unit time) at each node:
other sensors (black dotted lines). The vehicles move according P 1

to a nonlinear flocking control law [TJPO03] that includes global BWcpr = EN(R +1)

. . . 1 N
cooperation and local collision avoidance. BWyicppr = A_tkmc (E(n + 1))

for n system dimensions and m sensors.
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We observe the proven limiting rates of 1/+/BW for the particle

filters.

For sufficiently small measurement timesteps and sufficiently
small systems dynamics, the Kalman-type filters outperform the
O Starting point particle filters (in particular, RDEKF beats MCDPF). However,

Position of sensors

True trajectory I in all other cases MCDPF beats RDEKF. We summarize this

Sensor connection . )

At = 0.05 At = 0.1
4 vehicles | RDEKF better MCDPF better
10 vehicles| MCDPF better MCDPF better

Additionally, we found that regularization is necessary to obtain

reasonable behavior from Kalman-type filters for this system.
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